

New 250 GeV beam parameters

J. List, ILD General Meeting 7.11.2017

CR-0016

LUMINOSITY IMPROVEMENT AT 250GEV CM

The luminosity at the center-of-mass energy 250GeV can be improved by factor \sim 1.65 by adopting the horizontal emittance at IP factor 2 smaller than in the TDR. This is achieved by modifying the damping ring design slightly.

ne world's next great particle accelerator

LABORATION

- **1.** improved design of damping ring lattice => normalized horizontal emittance ~6 μ m -> ~4 μ m
- 2. revisited increase of emittance from damping ring to IP => emittance at IP ~10 μm -> ~5 μm
- 3. with these and TDR BDS optics, beam size at IP is reduced by a factor $\sqrt{2}$ => geometric luminosity larger by a factor $\sqrt{2}$
- 4. smaller beam size => enhanced pinch effect => actual luminosity larger by factor ~1.65 (CAIN)

Impact on Run Plan

Integrated Luminosities [fb]

1. vertical disruption parameter increases from ~25 -> ~35 => might need more accurate IP position control

- vertical disruption parameter increases from ~25 -> ~35
 => might need more accurate IP position control
- 2. energy loss by beamstrahlung will be larger by a factor ~2.6=> check impact on e.g. Higgs recoil mass!

Luminosity spectra

Impact on Higgs mass

at AWLC 2017

Jeans

D.

Impact on Higgs mass

- vertical disruption parameter increases from ~25 -> ~35
 => might need more accurate IP position control
- energy loss by beamstrahlung will be larger by a factor ~2.6
 => check impact on e.g. Higgs recoil mass!
- 3. incoherent pair creation increases by factor ~3 => is it only the amount, or also the angle / energy spectrum?
 - => any impact on VTX or BeamCal?

some of SiD's findings @ 5 T (A. Schütz, LCWS)

Hitting cone? (no, note log scale...)

some of SiD's findings @ 5 T (A. Schütz, LCWS)

Hitting cone? (no, note log scale...)

VTX occupancy: relative impact of anti-DID depends on L*

(note: "old L*" < "new L*" for SiD, so not directly transferable to ILD => we should finally have a look!)

30

R. [mm]

R. [mm]

ILD's findings (D. Jeans, AWLC)

ILD's findings (D. Jeans, AWLC)

ILD's findings (M. Berggren)

Conclusions

- increase in luminosity highly appreciated
 => communicated to TCMB @ Strasbourg
- ILD detector seems ok with new beam parameters
- but: statement based on simplified checks so far => still need to do the full studies, both on pair background and Higgs mass
- ...and don't forget that we also changed L* since last complete background study!
- Does ILD need to assign higher priority (= more person power) to update of pair background etc?