Switching HV for gatingGEM

Requirements

$\mathrm{I}=232.817 \mathrm{~mm}$

Border Area
$232.82 \mathrm{~mm} \times 13 \mathrm{~mm}=3026.6 \mathrm{~mm}^{2}$ $208.21 \mathrm{~mm} \times 13 \mathrm{~mm}=\frac{2706.7 \mathrm{~mm}^{2}}{-5733.3 \mathrm{~mm}^{2}}$

Active Area
$37288.7 \mathrm{~mm}^{2}-5733.3 \mathrm{~mm}^{2}=31555.4 \mathrm{~mm}^{2}$ $31555.4 \mathrm{~mm}^{2} \times 0.174=5490.6 \mathrm{~mm}^{2}$
$C=\varepsilon_{\mathrm{r}} \varepsilon_{0} A / d=3.4 \varepsilon_{0} 11223.9 \mathrm{~mm}^{2} / 12.5 \mu \mathrm{~m}=27 \mathrm{nF}$

Switching of $10 \mathrm{~V}=>\mathrm{Q}=\mathrm{C} \cdot \mathrm{U}=270 \mathrm{nC}$ With $\mathrm{R}=1 \Omega \rightarrow$ time constant $\tau=\mathrm{R} \cdot \mathrm{C}=270 \mathrm{~ns}$ Current I ~ 1 A

Main issue is, that the switching has to be done at HV: ~ 545-555 V (MM)
~2995-3005 V (tGEM)
Assuming both voltages are supplied externally and are available \rightarrow pretty easy. GND is shifted to GND $=545 / 2995 \mathrm{~V}$

The trigger signal for switching can be converted by an optocoupler (z.B. Toshiba TLP2367 \rightarrow Insulation resistance $\mathrm{V}_{\mathrm{rms}}=3750 \mathrm{~V}$)

Many optouplers are laid out for low currents only (5-10 mA).
For switching many device can be used. One with 10 V and low resistance is not too common.

Has to operate in $\mathrm{B}=4 \mathrm{~T}$.

First simple idea

Questions: 1.) protection resistor for gatingGEM? If yes, not after multiplexer/C but then?
2.) power supply for IC on HV ? (multiplexer/optocoupler)

One could use the voltage difference between HV1 and HV2 as supply voltage

- taken from before C to avoid switching noise \rightarrow low extra current

