
Switching HV for gatingGEM

Requirements

Border Area 2 mm × 13 mm = 3026.6

232.82 mm × 13 mm = 3026.6 mm² 208.21 mm × 13 mm = 2706.7 mm² = 5733.3 mm² Active Area

 37288.7 mm^2 - 5733.3 mm^2 = 31555.4 mm^2 $31555.4 \text{ mm}^2 \times 0.174$ = 5490.6 mm^2

 $C = \varepsilon_r \varepsilon_0 A/d = 3.4 \varepsilon_0 11223.9 \text{ mm}^2/12.5 \mu\text{m} = 27 \text{ nF}$

Switching of 10 V => Q = $C \cdot U$ = 270 nC With R = 1 Ω \rightarrow time constant τ = R·C = 270 ns

Current I ~ 1 A

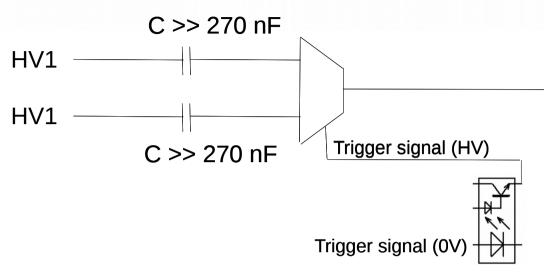
J. Kaminski LCTPC – CM DESY, 29.11.2017

Main issue is, that the switching has to be done at HV: ~ 545-555 V (MM) ~2995-3005 V (tGEM)

Assuming both voltages are supplied externally and are available → pretty easy.

GND is shifted to GND = 545/2995 V

The trigger signal for switching can be converted by an optocoupler (z.B. Toshiba TLP2367 \rightarrow Insulation resistance $V_{rms} = 3750 \text{ V}$)


Many optouplers are laid out for low currents only (5-10 mA). For switching many device can be used. One with 10 V and low resistance is not too common.

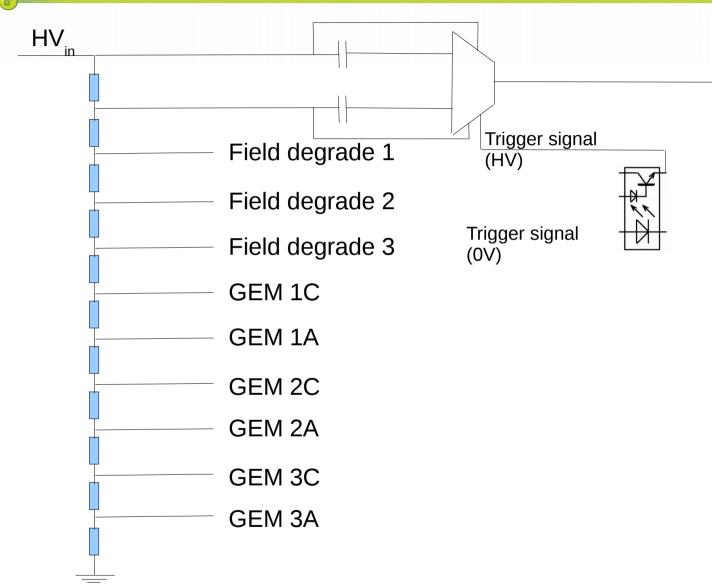
Has to operate in B = 4 T.

First simple idea

One electrode of gating GEM

Questions: 1.) protection resistor for gatingGEM? If yes, not after multiplexer/C but then?

2.) power supply for IC on HV ? (multiplexer/optocoupler)


One could use the voltage difference between HV1 and HV2 as supply voltage

taken from before C to avoid switching noise → low extra current

Case of GEM

