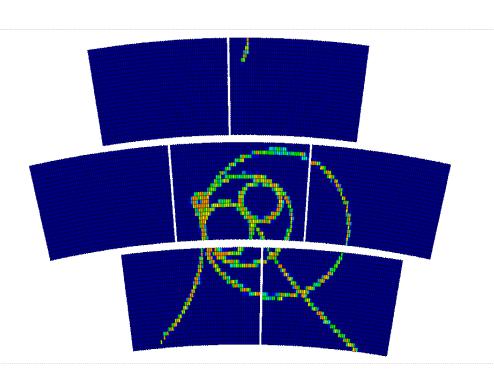
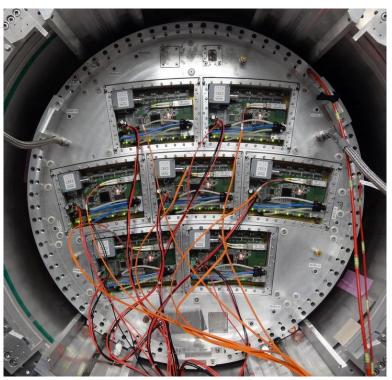
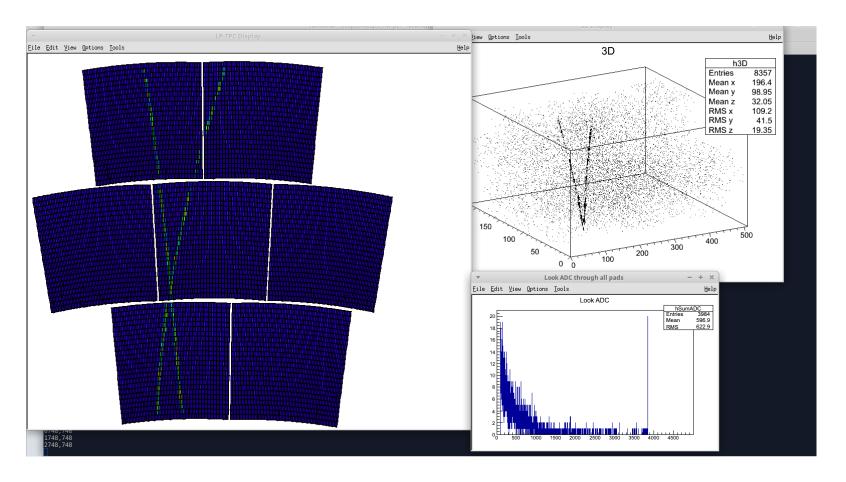
Micromegas modules


P. Colas, D. Attié, S. Ganjour (contribution from M. Zito and S. Suvorov


dE/dx analysis

With MM test beam data from 2015 by S.
 Suvorov a Russian student (from T2K)

Micromegas Large Prototype overview


- Endplate with 7 modules
- each module has 24 rows x 72 columns

ILC-TPC raw data

Event display

dE/dx study

 Perform the study similar to the one for the T2K TPCs (Claudio TN-001)

Method:

- 1. For each pad take maximum charge from ADC (C_{pad})
- 2. Sum up pads in a row to make a cluster ($C_{cluster}$)
- 3. For each track sort $C_{cluster}$ in increasing order (N clusters per track)
- 4. Take αN first clusters.

$$0.4 < \alpha < 1$$

5. Truncated mean energy per cluster

$$C_T = \frac{1}{\alpha N} \sum_{i}^{\alpha N} C_{cluster,i}$$

- 6. First look at the resolution.
- 7. Vary α to understand the influence on the results
- 8. Calculate C_T independent from the N some calibrations needed

2015 LP TPC Micromegas samples

Lots of different configuration tested with beam For the 1st look use a scan over drift length plots in this talk are mainly for module 0

E _{Field} V/cm	Drift z cm	Table z	Table Vertical 3	Sampling MHZ	Zero Suppression	Peaking time ns	Request N _{events}	V _{mesh} volts	DATA	
									RUN	Evts
B=1T										
230	0	-199	-40	25	1	200	1000	380	5148	1,000
	3	-169					1000		5149	1,000
	3	-169					4000		5150	4,000
	5	-149					4000		5151	4,000
	10	-99					4000		5152	4,000
	15	-49					4000		5153	4,000
	20	1					4000		5154	4,000
	25	51					4000		5155	4,000
	30	101					4000		5156	4,000
	35	151					4000		5157	4,000
	40	201					4000		5158	4,000
	45	251					4000		5159	4,000
	50	301					4000		5160	4,000
	52.9	330					4000		5161	on

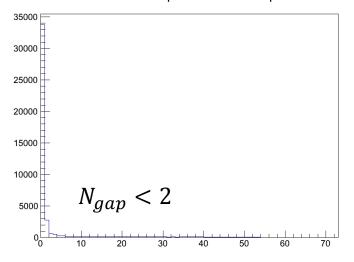
ILC-TPC event selection

- For first look PID study need:
 - 1. one track per event (per FEM)
 - 2. long enough track

FEM 0 selection results:

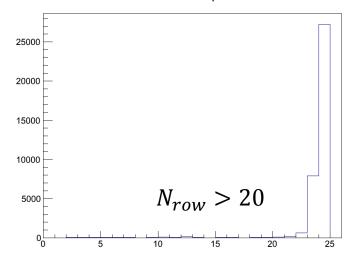
Events in sample: 46000

Not empty fem0: 44224

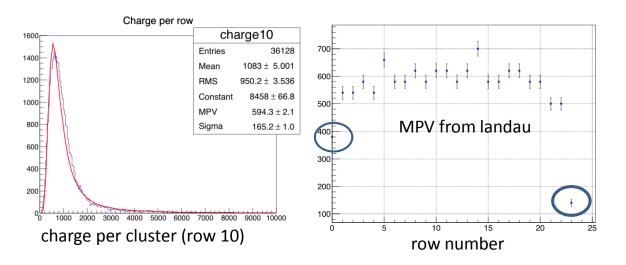

< 2 tracks : 37151

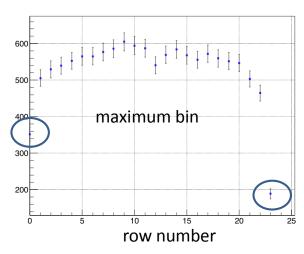
> 20 rows: 36146

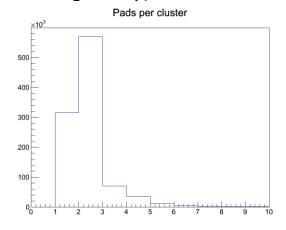
Selection:


 Look at maximum gap between pads hit in a row

Maximum X separation between pads


2. Look at track length (number of rows)


number of rows per event

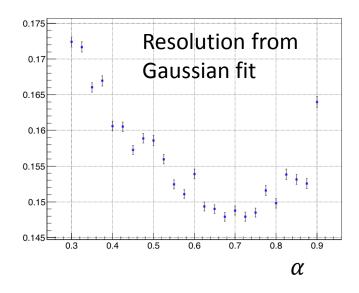

Charge per row (cluster)

Look at the most probable charge per cluster in a row

- Edges of module demonstrate lack of charge (Electric field inhomogeneity)
- pads at edges collect ~half of charge compared to center
- Exclude 1st and last row for dE/dx estimations

Typically 1-4 pad per cluster

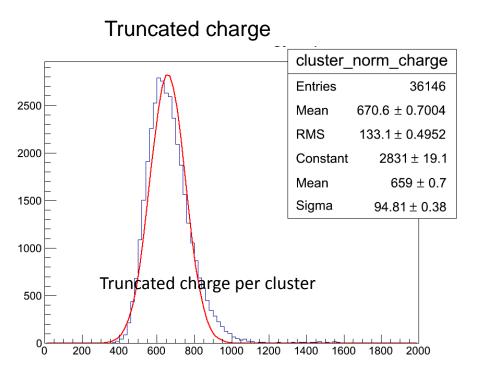
Charge cut


- Reminder about dE/dx study plan:
 - 4. Take αN first clusters.

$$0.4 < \alpha < 1$$

5. Truncated mean energy per cluster

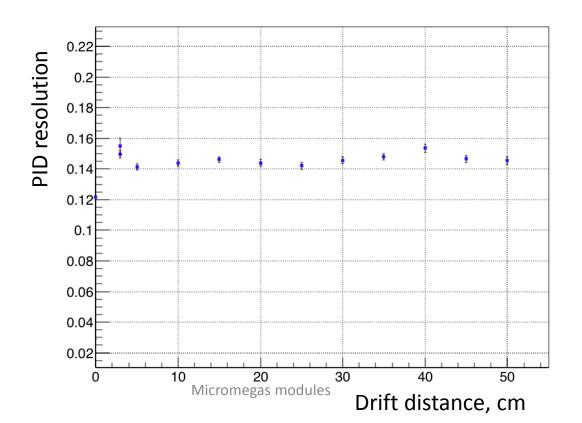
$$C_T = \frac{1}{\alpha N} \sum_{i}^{\alpha N} C_{cluster,i}$$


Need to define α

T2K value is 0.7
Still make sense!

First results

- Applying C_T calculation method to the selected events
- $\alpha = 0.7$ gives the best resolution


Caussian and FWHM calculations give ~same results
~14% for 24 rows FEM (~17 cm)

for T2K TPCs 72 pads (~80 cm) have ~6.5%

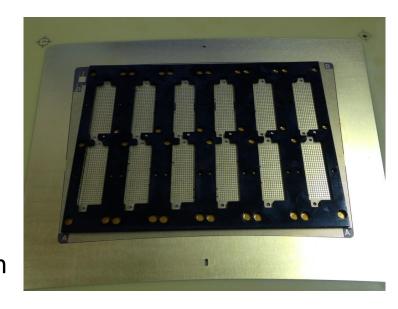
For ILD TPC track length ~120 cm: ~5.0%

First results

- Charge per pad is calculated as maximum ADC
- Maximum ADC can depend on drift distance → can effect PID resolution
- No dependence observed $\rightarrow C_{pad} = \max(ADC)$ is good enough

Summary

- LC-TPC 5 $GeV/c\ e^-$ samples are used for dE/dx resolution estimation
- the first estimation of the dE/dx resolution was done: 5.0 %


TODO:

- We still have:
 - other module work started some <u>very</u> preliminary results obtained
 - other data samples (voltage, beam position, peaking time)
 - other technical details → understand the possible dependence
- Calibration is necessary

Encapsulated resistive foil Micromegas with reverse polarization

Reserved a test beam period at DESY to test 3 to 4 modules with several improvements:

- Better pad connections (threaded stiffener glued on PCB, under mechanical test, electronic test in 1 or 2 weeks)
- Grounded mesh, anode at +400 V (should give less noise and less distortions)
- -- DLC delivered (2.5 Mohm/sq)
- -- same test going on for T2K upgrade with cosmic rays (2 modules ordered, one with annealing at 210 °C to reach 500 KOhm

Cosmic-ray setup (Boris Tuchming)

- There is a cosmic test permanently going on in Saclay (so-called FCC test)
- We hope to be able to test 4 new modules there before going to the test beam.