

Status in the past 3 years

Simulation side:
> Prediction of performance of the gating foil under higher B. (+ understanding of behavior)
$>$ Simulation did not fit with data under B.
$>$ Behavior under B is very suspicious.

Experimental side:
Comparison of Electron transmission between Exp. and Sim.

Exp vs Sim (Fujikura Type 3)

> A method for evaluating transmission has been modified:

Using only an open state data.
Two data set (normal/reverse voltage of Edrift) are not necessary.
http://www-jlc.kek.jp/jlc/sites/default/files/7.27SagaYamashita.pptx

Geometries for the simulation

Smooth
trapezoidal

Not smooth trapezoidal It seems to have protrusions..

Geometry parameters Measurement results

	Rim width (um)		Copper thickness(um)	
	F-side	B-side	F-side	B-side
Ave.	26.74	30.96	9.20	2.83
Max-Min	6.87	7.27	3.19	0.89
3σ	4.66	5.03	2.33	0.69

Daisuke Arai (presented at MPGD2015)

Item	Gating foil
Hole size	$304 \mu \mathrm{~m}$
Hole pitch	$335 \mu \mathrm{~m}$
Rim width : F-side	$27 \mu \mathrm{~m}$
Rim width : B-side	31 um
Insulator thickness	$12.5 \mu \mathrm{~m}$
size	100 mm x 100 mm
Processing time	70 min (only laser)
Optical aperture ratio	82.3%

Simulation

Avalanche Microscopic,

 with the "default" setting originally implemented in garfield

Ikematsu

Exp vs Sim (Fujikura Type 3)

Simulation

Avalanche Microscopic, with "Null collision steps"

originally implemented in garfield

There is a switch on "Null collision steps"
E-field is updated
in each step after sampling time Δt even if the step is null-collision.
According to a developer this was supposed that more precise tracking is given.

Simulation: AvalancheMicrosopic

Avalanche Microscopic function,
1). An electron trajectory is calculated based on given sampling time $\Delta \mathbf{t}(=-<\tau>\log (\mathbf{u}) \mathbf{u}[0,1])$,
2). Electron kinetic energy ε^{\prime} after Δt is evaluated

$$
\epsilon^{\prime}=\epsilon+q \mathbf{v} \cdot \mathbf{E} \Delta t+\frac{q^{2}}{2 m_{e}} \mathbf{E}^{2} \Delta t^{2}
$$

A change of the kinetic energy after Δt
v and E do not have time dependence, initial information are continuously used during Δt
(acceleration and deceleration are not sufficient.)
In reality,
E-field dramatically varies. especially at around geometry.
v and E should be time-dependent variables like $\mathrm{v}(\mathrm{t})$ and $\mathrm{E}(\mathrm{r}(\mathrm{t})$),

Simulation: AvalancheMicrosopic w/ sub-step

Avalanche Microscopic function,
1). An electron trajectory is calculated based on given sampling time $\Delta \mathbf{t}(=-<\tau>\log (\mathbf{u}) \mathbf{u}[0,1])$,
p22~p25
2). Electron kinetic energy ε^{\prime} after Δt is evaluated

$$
\epsilon^{\prime}=\epsilon+q \mathbf{v} \cdot \mathbf{E} \Delta t+\frac{q^{2}}{2 m_{e}} \mathbf{E}^{2} \Delta t^{2}
$$

change of the kinetic energy after Δt
Defined sub-step time $\delta \mathrm{t} \quad \delta t(=\Delta t / N) \quad$ recover above First approximation with $\mathrm{N}=1$

$$
\begin{aligned}
& \epsilon^{\prime}=\epsilon+\sum_{i}^{N} \underbrace{q \boldsymbol{v}_{i}\left(\boldsymbol{E}_{i-1}, \delta t_{i}\right)}_{\text {time dependent v }} \cdot \underset{\text { time dependent } \mathrm{E}}{\boldsymbol{\boldsymbol { E } _ { i }}\left(\boldsymbol{r}_{i-1}\left(\delta t_{i-1}\right)\right) \delta t_{i}} \\
& +\sum_{i}^{N} \frac{q^{2}}{2 m_{e}} \boldsymbol{E}_{i}\left(\boldsymbol{r}_{i-1}\left(\delta t_{i-1}\right)\right)^{2} \delta t_{i}^{2} \\
& v \text { depends on } E \text { and } \delta t \\
& E \text { depends on } r \\
& r \text { depends on } \delta t
\end{aligned}
$$

A program has to access a field map many times Huge CPU consumption and time is necessary.

If the field map is precisely generated, more time is needed

Simulation: AvalancheMicrosopic w/ sub-step approx.

Avalanche Microscopic function,
1). An electron trajectory is calculated based on given sampling time $\Delta \mathbf{t}(=-<\tau>\log (\mathbf{u}) \mathbf{u}[0,1])$,
p22~p25
2). Electron kinetic energy ε^{\prime} after Δt is evaluated

$$
\epsilon^{\prime}=\epsilon+q \mathbf{v} \cdot \mathbf{E} \Delta t+\frac{q^{2}}{2 m_{e}} \mathbf{E}^{2} \Delta t^{2}
$$

change of the kinetic energy after Δt
Defined sub-step time $\delta \mathrm{t} \quad \delta t(=\Delta t / N) \quad$ recover above First approximation with $\mathrm{N}=1$
I check $E^{\prime}(v($ initial $) * \Delta t)$

$$
d \boldsymbol{E}=\underset{\text { initial }}{\boldsymbol{E}}-\boldsymbol{E}^{\prime} \quad \longrightarrow \mathrm{tter} \Delta \mathrm{t} \quad \longrightarrow \quad \begin{gathered}
\text { continuously include } \\
\text { the variation as }
\end{gathered} \quad \boldsymbol{E}-\frac{d \boldsymbol{E}}{N} i
$$

$$
\begin{aligned}
\epsilon^{\prime}=\epsilon & +\sum_{i}^{N} \frac{q \boldsymbol{v}_{i}\left(\boldsymbol{E}-\frac{d \boldsymbol{E}}{N} i, \delta t_{i}\right)}{\text { time dependent } \mathrm{v}} \cdot\left(\boldsymbol{E}-\frac{d \boldsymbol{E}}{N} i\right) \delta t_{i} \\
& +\sum_{i}^{N} \frac{q^{2}}{2 m_{e}}\left(\boldsymbol{E}-\frac{d \boldsymbol{E}}{N} i\right)^{2} \delta t_{i}^{2}
\end{aligned}
$$

Under the assumption : the variation of the E-field b/w $\mathbf{E}(\mathbf{r})$ and $\mathbf{E}^{\prime}\left(\mathbf{r}^{\mathbf{s}}\right)$ (within $\Delta \mathrm{t}$) is linearly changed.

Simulation w/ sub-step approx.

Simulation w/ sub-step

Another simulation is the closed state

Ion blocking measurement (exp. data is with an electron)

\rightarrow The key point is diffusion.

$$
\begin{aligned}
& \text { t2k@ 0.0T e- } \sim 300 \mu \mathrm{~m} / \sqrt{ } \mathrm{cm} \text { (Magboltz.) 230v/cm } \\
& \text { Ar }+ \text {, } \mathrm{iC} 4 \mathrm{H} 10+\sim 142 \mu \mathrm{~m} / \sqrt{ } \mathrm{cm} \text { (textbook, Dt }{ }^{\wedge} 2 \sim 1 / E-f i e l d \\
& \text { an ion has thermal energy } \\
& \frac{D_{\mathrm{T}}(\omega)}{D_{\mathrm{T}}(0)}=\frac{1}{1+\omega^{2} \tau^{2}}, \quad \text { textbook } \\
& \omega \tau=B \mu \simeq \begin{cases}10^{-4} & \text { for ions } \\
1 & \text { for electrons }\end{cases} \\
& \omega \text { :cyclotron frequency } \\
& \tau \text { : mean free time } \\
& \text { Dt of the ion does not change under } \mathrm{B} \\
& \rightarrow \mathrm{~B}=0 \text { give enough prediction } \\
& \text { for the ion blocking, } \\
& \text { Exp. with the electron. } \\
& \text { can give the lower limit for the ion blocking } \\
& \text { The modified version gives similar result } \\
& \text { (electron) }
\end{aligned}
$$

Summary

Simulation was modified for predictions of the behavior of the gating foil
(I need to have discussion with a developer)
The Results reproduce experiment to some extent for 0 and 1 T .
With $0-1 \mathrm{~V}$ operation the transmission of $>80 \%$ is
PROBABLY achievable under $\sim 3.5 / 4.0 \mathrm{~T}$.
Simulation indicate that ion blocking of $<10^{\wedge}-5$ even for $<10^{\wedge}-6$ is
PROBABLY achievable for a higher B field with the applied voltage of $<-20 \mathrm{~V}$.

Remaining tasks are 1). direct measurement of ion blocking using the ion itself. and compare with the simulation (confirmation).
2). actual measurement under the higher B field. (electron/ion)

Ratio reaching to the dielectric

Ratio reaching to a lower copper

