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T. Ogawa (SOKENDAI) 

Improvement of  
                Garfield++ simulation  
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42

>  Prediction of performance 
       of the gating foil under higher B.
    (+ understanding of behavior )  

http://www-jlc.kek.jp/jlc/sites/default/files/7.27SagaYamashita.pptx

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Entries  4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Entries  4

Fraction:  0.0

End points X-Y (Upper copper)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Entries  6065

0

5

10

15

20

25

Entries  6065

Fraction: 16.9

End points X-Y (Polymide layer)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Entries  4999

0

2

4

6

8

10

12

14

16Entries  4999

Fraction: 14.0

End points X-Y (Lower copper)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Entries  24762

0

2

4

6

8

10

12

14

16

18

20Entries  24762

Fraction: 69.1

End points X-Y (Transfer region)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Entries  2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Entries  2

Fraction:  0.0

End points X-Y (Upper copper)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Entries  4752

0

5

10

15

20

25

30
Entries  4752

Fraction: 13.1

End points X-Y (Polymide layer)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Entries  6115

0

2

4

6

8

10

12

14

16

18

20Entries  6115

Fraction: 16.8

End points X-Y (Lower copper)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Entries  25455

0

2

4

6

8

10

12

14

Entries  25455

Fraction: 70.1

End points X-Y (Transfer region)

Fig. 12. ANSYS-Garfield++ simulation (B = 3.5 T, VGateGEM = 20 V)
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Preliminary
Electron end-points (Fujikura Type 0)
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Fig. 13. Fraction of electron end-points for the upper copper electrode, the
polyimide wall of Gate-GEM holes, and the lower copper electrode

most adapted for the module structure of the ILC-TPC readout;
it is easier to implement and allows a low switching voltage of
a few tens of volts. High optical transparency of Gate-GEM is
required to ensure its high transmission rate of electrons in the
open state because the ILC-TPC is operated in 3.5 T, and in a
gas with a long mean-free collision time of drift electrons.
To achieve high electron transmission, large-aperture Gate-
GEM samples having 75% to 85% optical transparency were
produced by Fujikura Ltd. These samples were tested with a
test chamber under an axial magnetic field of up to 1 tesla.
The electron transmission of the samples were measured to be
about 80% at 1 T. The simulation using an ANSYS-Garfield++
framework was also carried out, and the extrapolation to 3.5 T
shows acceptable 80% electron transmission for the ILC-TPC.
The development of a larger Gate-GEM (17×22 cm2) for the
ILC-TPC has already started and the first product is expected
by the end of March 2015. The Gate-GEM is able to block
positive ions almost completely by applying a small reversed
voltage of around 20 V [13]. Finally, it should be pointed out
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Exp vs Sim (Fujikura Type 0)
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Fig. 14. Simulated electron transmission rate as a function of the voltage
applied to Gate-GEMs

that drift electrons can be stopped as well by a low reversed
bias. Therefore a Gate-GEM can potentially replace a wire gate
of TPCs operated in a synchronous or asynchronous mode.
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Status in the past 3 years Comparison of Electron transmission
between Exp. and Sim.

>  Simulation did not fit with data 
    under B.  

>  Behavior under B is very suspicious.

>  A method for evaluating transmission 
             has been modified:

Using only an open state data.        
Two data set (normal/reverse voltage of Edrift) are not necessary.

Experimental side:

Simulation side:
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Geometries for the simulation

4. Accuracy of Single mask processing 

Measurement results 

  
Rim width (um) Copper thickness(um) 

F-side B-side F-side B-side 

ave. 26.74  30.96  9.20  2.83  

Max-Min 6.87  7.27  3.19  0.89  

3σ 4.66  5.03  2.33  0.69  

“Development of gating foils to inhibit ion feedback using FPC production techniques”	
Daisuke Arai (presented at MPGD2015)
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3. Single mask process 

Single mask - Results 

Item Gating foil 
Hole size  304μm 
Hole pitch 335μm 

Rim width : F-side 27μm 
Rim width : B-side 31um 
Insulator thickness 12.5μm 

size 100mm x 100mm 
Processing time 70min (only laser) 

Optical aperture ratio 82.3% 

Many problems happened...  

304μm 

F-side 

31μm 

Pic3-3.  Surface of F-side 

B-side 

Pic3-4.  Surface of F-side Pic3-5.  Cross section of rim 

2μm 

12.5μm 

10μm 

■Results 

Pic3-1. Problem1 
Effect of copper 
grain size 

Pic3-2. Problem2 
Effect of contact surface 
treatment on copper 

16/23 

“Development of gating foils to inhibit ion feedback using FPC production techniques”	
Daisuke Arai (presented at MPGD2015)

Geometry parameters

12.5 μmSmooth 
trapezoidal

Not smooth 
trapezoidal 
 It seems to have  
   protrusions..

Max-Min
Ave.
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one 
 sector

Common parameters: 
upper rim width 27 μm 
lower rim width 31 μm 
diel. thickness    12.5 μm 
upper rim thick. 9.5 μm 
lower rim thick. 3.0 μm 1 μm protrusion.

upper surface  
   aperture 84.5% 

geometrical 
   aperture 82.3% 

geometrical 
   aperture 81.2% 
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Fig. 12. ANSYS-Garfield++ simulation (B = 3.5 T, VGateGEM = 20 V)
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Fig. 13. Fraction of electron end-points for the upper copper electrode, the
polyimide wall of Gate-GEM holes, and the lower copper electrode

most adapted for the module structure of the ILC-TPC readout;
it is easier to implement and allows a low switching voltage of
a few tens of volts. High optical transparency of Gate-GEM is
required to ensure its high transmission rate of electrons in the
open state because the ILC-TPC is operated in 3.5 T, and in a
gas with a long mean-free collision time of drift electrons.
To achieve high electron transmission, large-aperture Gate-
GEM samples having 75% to 85% optical transparency were
produced by Fujikura Ltd. These samples were tested with a
test chamber under an axial magnetic field of up to 1 tesla.
The electron transmission of the samples were measured to be
about 80% at 1 T. The simulation using an ANSYS-Garfield++
framework was also carried out, and the extrapolation to 3.5 T
shows acceptable 80% electron transmission for the ILC-TPC.
The development of a larger Gate-GEM (17×22 cm2) for the
ILC-TPC has already started and the first product is expected
by the end of March 2015. The Gate-GEM is able to block
positive ions almost completely by applying a small reversed
voltage of around 20 V [13]. Finally, it should be pointed out
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Fig. 14. Simulated electron transmission rate as a function of the voltage
applied to Gate-GEMs

that drift electrons can be stopped as well by a low reversed
bias. Therefore a Gate-GEM can potentially replace a wire gate
of TPCs operated in a synchronous or asynchronous mode.
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Simulation 

Avalanche Microscopic,   
   with  the “default” setting   
         originally implemented in garfield

T2K @230V/cm

  trapezoidal   tapered 

Ikematsu
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seems to be buggy ? 
results are strange … 
   even for 0 T …

E-field is updated      
      in each step after sampling time Δt  
          even if the step is null-collision. 

There is a switch on “Null collision steps”

Avalanche Microscopic,   
   with  “Null collision steps”  
         originally implemented in garfield

Simulation 

According to a developer 
   this was supposed that  
            more precise tracking is given.   

T2K @230V/cm

B=1T B=1T

  trapezoidal   tapered 
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Simulation: AvalancheMicrosopic
Avalanche Microscopic function,   

1).  An electron trajectory is calculated based on  
         given sampling time Δt ( = -<τ> log(u)  u[0,1] ) ,  

2).  Electron kinetic energy ε’ after Δt is evaluated 
         

Chapter 2. Concepts and Techniques 24

Because of the electric field, the electron energy and the collision rate do however vary
during the free flight step. This can be taken into account using the so-called null-collision
technique [44]. An artificial “null-collision” scattering rate ·≠1

null is introduced which balances
the energy dependence of the “real” scattering rate ·≠1 such that their sum ·≠1 is constant,

·≠1 = ·≠1 (‘) + ·≠1
null (‘) = const.

The sampling of �t then proceeds as follows.

1. A trial time step is sampled using (2.23), but with · in lieu of · .

2. The energy ‘Õ after the trial step is calculated. In the absence of a magnetic field B, ‘Õ

is given by

‘Õ = ‘ + qv · E�t + q2

2me
E

2�t2. (2.24)

3. Another random number u œ [0, 1] is drawn. If u < ·≠1 (‘) /· , i. e. in case of a “real”
collision (as opposed to a “null-collision”), the trial time step �t is accepted. Otherwise,
a new random trial step �tÕ, o�set by �t, is sampled:

�tÕ = �t ≠ · ln u.

The steps 2 and 3 are repeated until a “real” collision occurs.

• The velocity v

Õ and position r

Õ after the free flight are calculated. For B = 0:

v

Õ = v + q

me
E�t, (2.25)

r

Õ = r + v�t + q

2me
E�t2. (2.26)

• Based on the relative collision rates at the new energy ‘Õ, the scattering process to take
place is selected and the energy and direction of the electron are updated according to the
type of collision. The scattering angle is calculated based on the algorithm described in
Ref. [45].

• After the collision, stepping is continued with the new energy and direction.

Cross-Section Database

Magboltz includes at present (version 8.9.7) cross-sections for 54 counting gases. Where available,
the cross-sections used in the program are taken from measurements and adjusted within the
experimental error to obtain agreement with measured transport coe�cients [46].

The estimated reliability of the implemented cross-sections for each gas is specified in terms of
“stars”. A rating of “2*” corresponds to a coarse description of the cross-sections, while a rating
of “5*” corresponds to a detailed, carefully validated description of the cross-sections.

In the last few years8, a number of major cross-section updates were made.

8 More precisely, the above list describes changes with respect to version 7.1 of Magboltz (the version currently
interfaced to Fortran Garfield)
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L VVH
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A change of the kinetic energy after Δt 

v  and E  do not have time dependence, 
initial information are continuously used  during Δt 

(acceleration and deceleration are not sufficient.) 

In reality,  
      E-field dramatically varies.  
                especially at around geometry. 
v and E  should be   time-dependent variables 
                    like  v(t) and E(r(t)),

https://cds.cern.ch/record/1500583/files/CERN-
THESIS-2012-208.pdf 
Heinrich Schindler,  
Ph.D thesis ``Microscopic Simulation of Particle Detector'',  
CERN-THESIS-2012-208, 13/12/2012 

p22 ~ p25

Ez component

Ex component



48

Simulation: AvalancheMicrosopic   w/ sub-step
Avalanche Microscopic function,   

1).  An electron trajectory is calculated based on  
         given sampling time Δt ( = -<τ> log(u)  u[0,1] ) ,  

2).  Electron kinetic energy ε’ after Δt is evaluated 
         

Chapter 2. Concepts and Techniques 24

Because of the electric field, the electron energy and the collision rate do however vary
during the free flight step. This can be taken into account using the so-called null-collision
technique [44]. An artificial “null-collision” scattering rate ·≠1

null is introduced which balances
the energy dependence of the “real” scattering rate ·≠1 such that their sum ·≠1 is constant,

·≠1 = ·≠1 (‘) + ·≠1
null (‘) = const.

The sampling of �t then proceeds as follows.

1. A trial time step is sampled using (2.23), but with · in lieu of · .

2. The energy ‘Õ after the trial step is calculated. In the absence of a magnetic field B, ‘Õ

is given by

‘Õ = ‘ + qv · E�t + q2

2me
E

2�t2. (2.24)

3. Another random number u œ [0, 1] is drawn. If u < ·≠1 (‘) /· , i. e. in case of a “real”
collision (as opposed to a “null-collision”), the trial time step �t is accepted. Otherwise,
a new random trial step �tÕ, o�set by �t, is sampled:

�tÕ = �t ≠ · ln u.

The steps 2 and 3 are repeated until a “real” collision occurs.

• The velocity v

Õ and position r

Õ after the free flight are calculated. For B = 0:

v

Õ = v + q

me
E�t, (2.25)

r

Õ = r + v�t + q

2me
E�t2. (2.26)

• Based on the relative collision rates at the new energy ‘Õ, the scattering process to take
place is selected and the energy and direction of the electron are updated according to the
type of collision. The scattering angle is calculated based on the algorithm described in
Ref. [45].

• After the collision, stepping is continued with the new energy and direction.

Cross-Section Database

Magboltz includes at present (version 8.9.7) cross-sections for 54 counting gases. Where available,
the cross-sections used in the program are taken from measurements and adjusted within the
experimental error to obtain agreement with measured transport coe�cients [46].

The estimated reliability of the implemented cross-sections for each gas is specified in terms of
“stars”. A rating of “2*” corresponds to a coarse description of the cross-sections, while a rating
of “5*” corresponds to a detailed, carefully validated description of the cross-sections.

In the last few years8, a number of major cross-section updates were made.

8 More precisely, the above list describes changes with respect to version 7.1 of Magboltz (the version currently
interfaced to Fortran Garfield)
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ζ ZZ
=v Λb Z,

ζ̃ ZZ
=v Λb̃ Z

(20)

L VVH
=M2 Z( 1 v+a Z Λ) Z µZµ H

+1 2v(ζ ZZ
Ẑ µνẐµν +ζ A

ZÂ µνẐµν )H
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Ẑ µν˜̂ Zµν +ζ̃ A
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The original calculation of the energy after the trial step ∆t is

ϵ
′
= ϵ+ qv ·E∆t+

q2

2me
E2∆t2,

To include continuous variation of the electric field which depends on time and a position, I just

introduced microscopic sub-step δt(= ∆t/N) by dividing the given ∆t by N . In this situation the

velocity and the electric field become time-dependent variables. For the calculation of the energy over

the given ∆t, the electric field is updated by looking at a field map and the velocity is recalculated

with the given micro time δti

ϵ
′
= ϵ +

N∑

i

qvi(Ei−1, δti) ·Ei(ri−1(δti−1))δti

+
N∑

i

q2

2me
Ei(ri−1(δti−1))

2δt2i

Actually this calculation needs much CPU consumption because the field map is accessed many

times. Although now I run programs to get results, I need much time until I get it.

In order to save time, another idea to include the continuous variation of the field is that; firstly

perform a virtual step with v and check the field E
′
at the reached point, then take difference

dE = E −E
′
. This difference is tried to include continuously as E − dE

N i after each micro time δti.

On this calculation the electric field and the velocity of the electron are also updated and recalculated

with the given micro time δti, where the change of the field is assumed to be linear whithin the given
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I guess that even above calculation still becomes good approximation for the reality (experiment)
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エネルギー運動量保存則よりヒッグスの質量MH を求める。

M2
h = (ECM − EZ)

2 − p2
Z

= E2
CM − 2ECMEZ + E2

Z − p2
Z (pZ = pl1 + pl2)

= E2
CM − 2ECM(|pl1|+ |pl2|) + (|pl1|+ |pl2|)2 − (pl1 + pl2)

2

= E2
CM − 2ECM(|pl1|+ |pl2|) + 2|pl1||pl2|(1− cosθ)

From: B To: A 2

Concerning the Avalanche Microscopic tracking

I put one experimental and simulated results showing the difference of the step calculation 
where we measured transmission rate of an electron. reference http://inspirehep.net/record/1498754/ 

Of course the step calculation is divided in the same way as the energy calculation.    

Original garfield++ AvalancheMicro later(2nd) calculation
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The original calculation of the energy after the trial step ∆t is

ϵ
′
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To include continuous variation of the electric field which depends on time and a position, I just

introduced microscopic sub-step δt(= ∆t/N) by dividing the given ∆t by N . In this situation the

velocity and the electric field become time-dependent variables. For the calculation of the energy over
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Actually this calculation needs much CPU consumption because the field map is accessed many

times. Although now I run programs to get results, I need much time until I get it.

In order to save time, another idea to include the continuous variation of the field is that; firstly

perform a virtual step with v and check the field E
′
at the reached point, then take difference

dE = E −E
′
. This difference is tried to include continuously as E − dE

N i after each micro time δti.

On this calculation the electric field and the velocity of the electron are also updated and recalculated

with the given micro time δti, where the change of the field is assumed to be linear whithin the given

∆t
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I guess that even above calculation still becomes good approximation for the reality (experiment)

1.1 準備A

hh

初期状態の重心系エネルギーECM、終状態 Zボソンの４元運動量 (EZ ,pZ)として、
エネルギー運動量保存則よりヒッグスの質量MH を求める。
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2 − p2
Z

= E2
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Z − p2
Z (pZ = pl1 + pl2)

= E2
CM − 2ECM(|pl1|+ |pl2|) + (|pl1|+ |pl2|)2 − (pl1 + pl2)

2

= E2
CM − 2ECM(|pl1|+ |pl2|) + 2|pl1||pl2|(1− cosθ)

From: B To: A 2

Concerning the Avalanche Microscopic tracking

I put one experimental and simulated results showing the difference of the step calculation 
where we measured transmission rate of an electron. reference http://inspirehep.net/record/1498754/ 

Of course the step calculation is divided in the same way as the energy calculation.    

Original garfield++ AvalancheMicro later(2nd) calculation

(here, I just pick up the energy calculation  
  as an example for illustrating  
  what I would like to introduce)
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A program has to access a field map many times 
Huge CPU consumption and time is necessary. 
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Simulation: AvalancheMicrosopic   w/ sub-step approx. 
Avalanche Microscopic function,   

1).  An electron trajectory is calculated based on  
         given sampling time Δt ( = -<τ> log(u)  u[0,1] ) ,  

2).  Electron kinetic energy ε’ after Δt is evaluated 
         

Chapter 2. Concepts and Techniques 24

Because of the electric field, the electron energy and the collision rate do however vary
during the free flight step. This can be taken into account using the so-called null-collision
technique [44]. An artificial “null-collision” scattering rate ·≠1

null is introduced which balances
the energy dependence of the “real” scattering rate ·≠1 such that their sum ·≠1 is constant,

·≠1 = ·≠1 (‘) + ·≠1
null (‘) = const.

The sampling of �t then proceeds as follows.

1. A trial time step is sampled using (2.23), but with · in lieu of · .

2. The energy ‘Õ after the trial step is calculated. In the absence of a magnetic field B, ‘Õ

is given by

‘Õ = ‘ + qv · E�t + q2

2me
E

2�t2. (2.24)

3. Another random number u œ [0, 1] is drawn. If u < ·≠1 (‘) /· , i. e. in case of a “real”
collision (as opposed to a “null-collision”), the trial time step �t is accepted. Otherwise,
a new random trial step �tÕ, o�set by �t, is sampled:

�tÕ = �t ≠ · ln u.

The steps 2 and 3 are repeated until a “real” collision occurs.

• The velocity v

Õ and position r

Õ after the free flight are calculated. For B = 0:

v

Õ = v + q

me
E�t, (2.25)

r

Õ = r + v�t + q

2me
E�t2. (2.26)

• Based on the relative collision rates at the new energy ‘Õ, the scattering process to take
place is selected and the energy and direction of the electron are updated according to the
type of collision. The scattering angle is calculated based on the algorithm described in
Ref. [45].

• After the collision, stepping is continued with the new energy and direction.

Cross-Section Database

Magboltz includes at present (version 8.9.7) cross-sections for 54 counting gases. Where available,
the cross-sections used in the program are taken from measurements and adjusted within the
experimental error to obtain agreement with measured transport coe�cients [46].

The estimated reliability of the implemented cross-sections for each gas is specified in terms of
“stars”. A rating of “2*” corresponds to a coarse description of the cross-sections, while a rating
of “5*” corresponds to a detailed, carefully validated description of the cross-sections.

In the last few years8, a number of major cross-section updates were made.

8 More precisely, the above list describes changes with respect to version 7.1 of Magboltz (the version currently
interfaced to Fortran Garfield)
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The original calculation of the energy after the trial step ∆t is

ϵ
′
= ϵ+ qv ·E∆t+

q2

2me
E2∆t2,

To include continuous variation of the electric field which depends on time and a position, I just

introduced microscopic sub-step δt(= ∆t/N) by dividing the given ∆t by N . In this situation the

velocity and the electric field become time-dependent variables. For the calculation of the energy over

the given ∆t, the electric field is updated by looking at a field map and the velocity is recalculated

with the given micro time δti

ϵ
′
= ϵ +

N∑

i

qvi(Ei−1, δti) ·Ei(ri−1(δti−1))δti

+
N∑

i

q2

2me
Ei(ri−1(δti−1))

2δt2i

Actually this calculation needs much CPU consumption because the field map is accessed many

times. Although now I run programs to get results, I need much time until I get it.

In order to save time, another idea to include the continuous variation of the field is that; firstly

perform a virtual step with v and check the field E
′
at the reached point, then take difference

dE = E −E
′
. This difference is tried to include continuously as E − dE

N i after each micro time δti.

On this calculation the electric field and the velocity of the electron are also updated and recalculated

with the given micro time δti, where the change of the field is assumed to be linear whithin the given

∆t

ϵ
′
= ϵ +

N∑

i

qvi

(
E − dE

N
i, δti

)
·
(
E − dE

N
i
)
δti

+
N∑

i

q2

2me

(
E − dE

N
i
)2
δt2i

I guess that even above calculation still becomes good approximation for the reality (experiment)

1.1 準備A

hh

初期状態の重心系エネルギーECM、終状態 Zボソンの４元運動量 (EZ ,pZ)として、
エネルギー運動量保存則よりヒッグスの質量MH を求める。

M2
h = (ECM − EZ)

2 − p2
Z

= E2
CM − 2ECMEZ + E2

Z − p2
Z (pZ = pl1 + pl2)

= E2
CM − 2ECM(|pl1|+ |pl2|) + (|pl1|+ |pl2|)2 − (pl1 + pl2)

2

= E2
CM − 2ECM(|pl1|+ |pl2|) + 2|pl1||pl2|(1− cosθ)

From: B To: A 2

Concerning the Avalanche Microscopic tracking

I put one experimental and simulated results showing the difference of the step calculation 
where we measured transmission rate of an electron. reference http://inspirehep.net/record/1498754/ 

Of course the step calculation is divided in the same way as the energy calculation.    

Original garfield++ AvalancheMicro later(2nd) calculation

(here, I just pick up the energy calculation  
  as an example for illustrating  
  what I would like to introduce)

initial

recover above First approximation with N=1 

change of the kinetic energy after Δt 

https://cds.cern.ch/record/1500583/files/CERN-
THESIS-2012-208.pdf 
Heinrich Schindler,  
Ph.D thesis ``Microscopic Simulation of Particle Detector'',  
CERN-THESIS-2012-208, 13/12/2012 

p22 ~ p25

Defined sub-step time δt

I check E’ (v(initial) * Δt) 
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Vgate-GEM [V]
0 5 10 15 20

El
ec

tro
n 

tra
ns

m
is

si
on

0.6

0.7

0.8

0.9

1

geometrical
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@B=0.0T

@B=1.0T

@B=4.0T

Ed=Et=230V/cm, T2K gas@NTP

Exp. B=0.0T

Exp. B=1.0T

Simulation

Simulation w/ sub-step approx.

default default

  trapezoidal   tapered 
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Simulation w/ sub-step

  trapezoidal   tapered 



52
Volage to the gating GEM [V]
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1

Ed=Et=230V/cm
Meas. elec. (B=0)
Simu. Ava-Micro. elec. (B=0)
Simu. Ava-MC.     ion   (B=0)

Geometry
m µm / HolePitch 335µ - Diele. 12.5
m µm / LwCopp. 3.0µ - UpCopp. 9.5

mµm / LwRim. 31 µ - UpRim. 27
 - T2K gas / E-feild 230V/cm

Another simulation     is     the closed state

→ B=0 give enough prediction  
             for the ion blocking,  

      Exp. with the electron.  
        can give the lower limit for the ion blocking 
          

Ion blocking measurement ( exp. data is with an electron ) 
→ The key point is diffusion.  

  t2k@ 0.0T     e-                      ~   300 µm/√cm  (Magboltz.)    230v/cm 
                         Ar+,iC4H10+   ~   142 µm/√cm  (textbook,   Dt^2 ~ 1/E-field   
                                                                               an ion has thermal energy  
                                                                               (thermal balance)) 
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2.2.3 Inclusion of Magnetic Field

When we consider the influence of a magnetic field on drifting electrons and
ions, the first indication may be provided by the value of the mobility µ of these
charges. In particle chamber conditions, this is of the order of magnitude of µ ≃
104 cm2 V−1 s−1 for electrons (see Fig. 2.17 and use (2.7)), whereas for ions the
order of magnitude is µ = 1cm2 V−1 s−1 (see Tables 2.1 and 2.2). Typical magnetic
fields B available to particle experimenters are limited, so far, by the magnetic sus-
ceptibility of iron, and the order of magnitude is 1 T or 10−4 V s cm−2. We know
from Sect. 2.1 that it is the numerical value of ωτ = (e/m)Bτ that governs the ef-
fects of the magnetic field on the drift velocity vector. Using (2.7), which stated that
µ = (e/m)τ , we find

ωτ = Bµ ≃
{

10−4 for ions
1 for electrons

in order of magnitude. Therefore, the effect of such magnetic fields on ion drift is
negligible, and we concentrate on electrons. This has the advantage that we may
assume that the colliding body scatters isotropically in all directions, owing to its
small mass.

When the magnetic field is added to the considerations of Sect. 2.2.1, we can
describe the most general case in a coordinate system in which B is along z, and E
has components Ez and Ex. An electron between collisions moves according to the
equation of motion,

m
dvvv
dt

= eE + e[vvv×B], (2.41)

which in our case is written as

v̇x = εx +ωvy,

v̇y = −ωvx,

v̇z = εz,

(2.42)

where ω ≡ (e/m)B and ε ≡ (e/m)E. Electrons have their direction of motion ran-
domized in each collision, and we are interested in the extra velocity picked up by
the electron since the last collision. Hence we look for the solution of (2.42) with
vvv = 0 at t = 0. It is given by

vx(t) = (εx/ω)sin ωt,

vy(t) = (εx/ω)(cos ωt −1),
vx(t) = εzt.

(2.43)

Before we can identify v with the drift velocity, we must average over t, using (2.16),
the probability distribution of t. This was also done when deriving (2.14), which,
being a linear function of time, required t to be replaced by τ , the mean time since
the last collision. The drift velocity for the present case is given by
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⟨x2⟩ = ⟨y2⟩ =
2
3

l2
0

1+ω2l2
0/c

=
2
3

l2
0

1+ω2τ2 ,

⟨z2⟩ =
2
3

l2
0 .

In comparison to (2.60), the magnetic field has caused the diffusion along x and y
(then perpendicular to the magnetic field) to be reduced by the factor

DT(ω)
DT(0)

=
1

1+ω2τ2 , (2.72)

whereas the longitudinal diffusion is the same as before:

DL(ω) = DL(0). (2.73)

If there is an E field as well as a B field in the gas, the electric and magnetic
anisotropies combine. In the most general case of arbitrary field directions, the diffu-
sion is described by a 3×3 tensor: let the B field be along the z axis of a right-handed
coordinate system S, and let the drift direction û, which is at an angle β with respect
to B, have components along ẑ and x̂. The electric anisotropy is along û, and the dif-
fusion tensor is diagonal in the system S′ which is rotated around ŷ by the angle β .

In order to describe the two anisotropies in S, we must transform the diagonal
tensor S′ to S before we multiply by the diagonal tensor that represents the magnetic
anisotropy. If the electric anisotropy is equal to DL/DT and the magnetic one is
equal to D(0)/D(ω) = 1/η , we get for the combined tensor S

Dik =

⎛

⎝
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

⎞

⎠

⎛

⎝
DT 0 0
0 DT 0
0 0 DL

⎞

⎠

⎛

⎝
cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

⎞

⎠

×

⎛

⎝
η 0 0
0 η 0
0 0 1

⎞

⎠ ,

Dik =

⎛

⎝
η(DT cos2 β +DL sin2 β ) 0 (DL −DT)sinβ cosβ

0 DT 0
η(DT −DT)sinβ cosβ 0 DT sin2 β +DL cos2 β

⎞

⎠ . (2.74)

The importance of diffusion for drift chambers is in the limitation for the co-
ordinate measurement. Hence, we are interested in the deviation along a given
direction of an electron that has been diffusing for a time t. We treat the gen-
eral case of a diffusion tensor Di j and a direction α̂ given by the three cosine
αk(α2

1 + α2
2 + α2

3 = 1), both expressed in the same coordinate system. We make
use of the continuity equation (2.58) for the density n(x1,x2,x3), normalized so that∫

n dx = 1. For a time-independent and homogeneous field the drift velocity is
constant, and we have

ω :cyclotron frequency 
τ : mean free time 

Dt of the ion does not change under B 

The modified version gives similar result  
    (electron)

textbook

Textbook
Particle Detection 
      with Drift Chambers 
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Summary

Simulation was modified for predictions of the behavior of the gating foil 
       ( I need to have discussion with a developer ) 

The Results reproduce experiment to some extent for 0 and 1 T. 
        With 0-1 V operation the transmission of >80% is  
                      PROBABLY achievable under ~3.5/4.0 T. 

Simulation indicate that ion blocking of <10^-5 even for <10^-6 is  
                      PROBABLY achievable for a higher B field 
                             with the applied voltage of < -20V. 

Remaining tasks are  1). direct measurement of ion blocking using the ion itself.    
                                              and compare with the simulation (confirmation).  
                               
                                    2). actual measurement under the higher B field. (electron/ion) 
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Ratio reaching to the dielectric

4T

1T

Ratio reaching to a lower copper
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