TPC DD4HEP Detector Model

Validation and Updates before scheduled large scale MC production

Dimitra Tsionou LCTPC Collaboration Meeting Hamburg, 01-Dec-2017

TPC dimensions

> Due to a change on the Ecal thickness, we had to find ~3.5 cm in the barrel region → TPC radius reduced to account for that

> We had to:

large

small

- give up part (~half) of the uninstrumented gas region allocated to a laser alignment system
- Reduce outer field wall to 5.5cm from 6cm
- Remove 2 pad rows

- Current dimensions (~in agreement with DBD for large model)
 - Inner radius: 329mm, Outer radius: 1770 mm, half length: 2350 mm
 - Inner wall thickness: 25mm, Outer wall thickness: 55mm
 - Inner and Outer radius of sensitive volume: 375-1697 mm (220 pad rows of 6mm height)
 - Inner radius: 329mm, Outer radius: 1427 mm, half length: 2350 mm
 - Inner wall thickness: 25mm, Outer wall thickness: 55mm
 - Inner and Outer radius of sensitive volume: 375-1354 mm (163 pad rows of 6mm height)

Field Cage Material Budget

- DBD values: 1% X₀ inner wall, 1% X₀ gas, 3% X₀ outer wall
- Both the inner and outer field cage walls had the same material budget 0.9% X₀
- > Fix: Increase all materials by x3 for outer wall to reach desired material budget
- > Fix2: Change the order of Cu and Al. Now Cu is on the outside of the TPC \rightarrow provides better shielding

<u>Before</u>

Cathode

- > TPC cathode is positioned at z=0 held by rings from the field cage
- Some commands showed the cathode as "air" but in the reconstruction software it was properly taken into account → Fixed by placing the cathode volume as part of the TPC mother volume

92 μm thick Kapton and on each side 4 μm Cu

+.															
+	Materia	l scan between:	x_0 = (100.00, 1	00.00, -1	0.00) [cm] a	$nd x_1 = (10)$	0.00, 100.00), 10.00)[cm]:					
	\ Num. \ Layer \	Material Name	Atom Number/Z	ic Mass/A [g/mole]	Density [g/cm3]	Radiation Length [cm]	Interaction Length [cm]	Thickness [cm]	Path Length [cm]	Integrated X0 [cm]	Integrated Lambda [cm]	Mat End (erial point cm,	cm,	cm)
	1 T 2 G 3 G 4 G 5 G 6 T	DR_gas i4_Cu i4_KAPTON i4_KAPTON i4_Cu DR_gas	17 29 6 29 17	38.746 63.546 12.701 12.701 63.546 38.746	0.0017 8.9600 1.4200 1.4200 8.9600 0.0017	11539.6342 1.4352 28.5903 28.5903 1.4352 11539.6342	69059.7950 15.5141 24.8436 24.8436 15.5141 69059.7950	9.995 0.000 0.005 0.005 0.000 9.995	10.00 10.00 10.00 10.00 10.00 20.00	0.000866 0.001145 0.001306 0.001467 0.001745 0.002612	0.000145 0.000171 0.000356 0.000541 0.000567 0.000711	(0 (0 (0 (0 (0	.00, 0. .00, 0. .00, 0. .00, 0. .00, 0. .00, 0.	00, 00, 00, 00, 00, 00,	10.00) 10.00) 10.00) 10.00) 10.00) 20.00)
 +.	0 A	verage Material	12	26.954	0.0027	7658.4155	28115.8466	20.000	20.00	0.002612	0.000711	(0	.00, 0.	00,	20.00)

Cathode

Cu

Gaps for module borders

Previously, the anode was fully instrumented

- Now module gaps of 1mm width (dead region) have been introduced assuming 8 layers of modules for both the small and large models
- We discussed with Frank the possibility of increasing the gaps by 1-2mm but this requires work to fix the pattern recognition

thpox:thpoy {thpox>0&&thpoy>0}

Point resolution formulae and values

- Some discrepancies between DD4HEP, DBD and current knowledge
- Formulae updated. Current situation shown below

- Even though we want to take a conservative approach, our simulation performs better than our current knowledge
- > Agreed to update $\sigma 0$ to 55µm instead of 50µm
- > Requested this from Frank. Not sure if currently it has been updated → To check

Double hit resolution and dE/dx resolution

- > Double hit resolution in DD4HEP model: 2mm (pad size: 1x6 mm2)
- > Based on the double hit resolution studies by Oleksiy, this is possible to achieve but not with the default algorithms currently used for the prototype
- > No change proposed
- dE/dx resolution is DD4HEP model is 5% for both large and small detectors
- > Based on current studies by Aiko and Paul, this is ~4% and ~5% for large and small models respectively
- > How to proceed? Different numbers for each model? (if changes are still accepted before the new MC production)
- If so, which input goes in? Current prototype studies are in 1T field. How does this extrapolate to 3.5-4T? How much do tracks <10GeV bend?</p>
- Studies needed... Volunteers?

Summary

- > TPC model updated and validated
- > Additional changes \rightarrow possible?
 - dE/dx different for large and small models?
- I will write a short document (notes) so that the general characteristics of the models are accessible without looking into the code
- > New contact person?

Back-Up

Dimitra Tsionou | LCTPC Collaboration Meeting | 01/12/17 | Page 9

dE/dx input for LCTPC DD4HEP model (Paul M.)

- How to parametrise dE/dx (resolution) in the DD4Hep model?
- Possible dependencies:
 - obvious: particle type & momentum
 - number of hits / fully contained or going through end plate
 - number of usable hits: overlapping tracks / tracks in jets (~50% usable hits)
 - polar angle / dip angle ($\lambda = \theta 90^\circ$): ~1/cos(λ)
 - **local** azimuth angle $\alpha \rightarrow curvature of track (momentum): ~1/cos(<math>\alpha$)
 - **global** azimuth angle / track reference angle φ : more complicated

Endcap Dimensions

4												
	Haterial scan betweer	n: x_0 = (50.00,	0.00,	0.00) [cm] a	and $x_1 = ($	50.00, 0.0	0, 300.00) [cm] :			
	\ Material Num. \ Name Laver \	Aton Number/Z	nic Mass/A [g/mole]	Density	Radiation Length [cm]	Interaction Length [cm]	Thickness	Path Length [cm]	Integrated X0 [cm]	Integrated Lambda [cm]	Material Endpoint	cm. cm)
Cathada									[]			
	1 G4_AIR	7	14.801	0.0012	30280.1689	66568.7074	0.003	0.00	0.000000	0.00000	(0.00,	0.00, 0.00)
Sensitive	2 TDR_gas	17	38.746	0.0017	11539.6342	69059.7950	222.497	222.50	0.019281	0.003222	(0.00,	0.00, 222.50)
volumo	3 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.000	222.50	0.019490	0.003241	(0.00,	0.00, 222.50)
volume	4 G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.003	222.50	0.019595	0.003362	(0.00,	0.00, 222.50)
	5 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.000	222.50	0.019804	0.003381	(0.00,	0.00, 222.50)
	6 TDR_gas	17	38.746	0.0017	11539.6342	69059.7950	0.445	222.95	0.019843	0.003388	(0.00,	0.00, 222.95)
	7 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.000	222.95	0.020052	0.003407	(0.00,	0.00, 222.95)
	8 G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.003	222.95	0.020157	0.003528	(0.00,	0.00, 222.95)
	9 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.000	222.95	0.020366	0.003547	(0.00,	0.00, 222.95)
	10 TDR_gas	17	38.746	0.0017	11539.6342	69059.7950	0.445	223.40	0.020404	0.003554	(0.00,	0.00, 223.40)
Madula	11 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.000	223.40	0.020613	0.003573	(0.00,	0.00, 223.40)
ivioaule	12 G4_KAPTON	6	12.701	1.4200	28.5903	24.8436	0.003	223.40	0.020718	0.003694	(0.00,	0.00, 223.40)
+	13 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.000	223.40	0.020927	0.003/13	(0.00,	0.00, 223.40)
- <u> </u>	14 IDR gas	1/	38.746	0.001/	11539.6342	69059.7950	0.445	223.84	0.020966	0.003/19	(0.00.	0.00, 223.84)
Endplate	15 G4_Cu	29	63.546	8.9600	1.4352	15.5141	0.005	223.85	0.024450	0.004042	(0.00,	0.00, 223.85)
12.5 cm	10 g10	11	21.318	1.7000	10.1529	08.2104	0.200	224.05	0.030831	0.006974	(0.00,	0.00, 224.05)
12.0 011	17 64_51	14	28.085	2.3300	9.3490	45./532	0.050	224.10	0.042179	0.008000	(0.00,	0.00, 224.10)
		0	11.000	1.3000	32.2930	2/.1308	0.200	224.30	0.048372	0.015430	(0.00,	0.00, 224.30)
	19 G4_KAPTON	12	12.701	1.4200	20.5905	24.0430	0.100	224.40	0.051870	0.019402	(0.00,	0.00, 224.40)
	20 04_AI 21 C4 KAPTON	13	12 701	2.0330	28 5002	24 8426	0.200	224.00	0.074355	0.024000	(0.00,	0.00, 224.00)
	21 G4_KAFTON 22 CarbonEibor	6	12.701	1.4200	20.5505	24.0430 54 6827	0.100	224.70	0.077833	0.020031	(0.00, 0.00)	0.00, 224.70)
		17	38 746	0 0017	11539 63/2	69059 7950	0.000	225.00	0.088303	0.034118	(0.00, 0.00)	0.00, 225.00)
	24 TPC endplate mi	iv 9	17 288	0 5828	56 2236	137 6252	10 000	225.00	0.266164	0 106779	(0.00)	0.00, 225.00)
	25 Air	7	14.801	0.0012	30280.1689	66568.7074	65.000	300.00	0.268311	0.107755	(0.00,	0.00, 300.00)
	0 Average Materia	al 9	17.556	0.0278	1118.1072	2784.0921	300.000	300.00	0.268311	0.107755	(0.00,	0.00, 300.00)
-												

