Tile Detector

Mainz March 8, 2018

Yonathan Munwes on behalf of the Tile Detector group

Introduction - signal

- Charged LFV μ^+ ->e⁺e⁻e⁺
- SM Branching ratio **<10**⁻⁵⁴

-> unobservable!

 e^+

 W^+

νμ

 μ^+

 v_{e}

e+

Introduction - signal

- Charged LFV μ^+ ->e⁺e⁻e⁺
- SM Branching ratio <10⁻⁵⁴

-> unobservable!

- Enhanced in (BR>1x10⁻¹⁶):
 - Grand unified models
 - Super symmetry
 - Left-right symmetric models
 - Extended Higgs sector
 - Extra dimensions (Kaluza-Klein tower)

 $\tilde{\gamma}^0$ Loop diagram Z ę Introduction – signal

- Charged LFV μ^+ ->e⁺e⁻e⁺
- SM Branching ratio <10⁻⁵⁴

-> unobservable!

- Enhanced in (BR>1x10⁻¹⁶):
 - Grand unified models
 - Super symmetry
 - Left-right symmetric models
 - Extended Higgs sector
 - Extra dimensions (Kaluza-Klein tower)

- The current best limit >1x10⁻¹² (SINDRUM 1988)
- Mu3e experiment aims for BR~ 10⁻¹⁶

Background sources - internal conversion (irreducible)

Internal conversion in SM 3.4x10⁻⁵

- Only distinguishing by missing momentum carried by neutrinos
- Need excellent momentum resolution!

 Michel decay (SM 99.997%) – generating e⁺
Bhabha scattering (e+ scattering with e in the target)

 Michel decay (SM 99.997%) – generating e⁺
Bhabha scattering (e+ scattering with e in the target)

Positive muon stops on the target

Michel decay (SM 99.997%) – generating e⁺

Bhabha scattering
(e+ scattering with e in the target)

Positron hits an electron...

Michel decay (SM 99.997%) – generating e⁺ ٠ W^+ $\bar{\nu}_{\mu}$ Bhabha scattering ٠ (e+ scattering with e in the target) е ... Undergoing Bhabha scattering ρ

Michel decay (SM 99.997%) – generating e⁺ ٠ W^+ $\bar{\nu}_{\mu}$ Bhabha scattering (e+ scattering with e in the target) If another moun stops close to the vertex... e

Michel decay (SM 99.997%) – generating e⁺

Bhabha scattering
(e+ scattering with e in the target)

- Need very good timing
- vertex and momentum resolution

e

 W^+

 $\bar{\nu}_{\mu}$

The Mu3e experiment - phase I

Key requirements:

- High muon stopping rate (O(10⁸ muons/s))
- Vertex resolution ~200 µm
- Momentum resolution ~ 0.5 MeV
- Require low material budget

- Fiber time resolution < 500 ps (accidental background suppression)
- Tile time resolution < 100 ps (coincidence and event separation)

The Tile detector

Requirements

- Detection efficiency close to 100%
- Time resolution better than 100 ps
- Maximum hit rate up to 60 kHz/channel
- Enough energy resolution for time walk correction

Background suppression factor

Tracker hits	Fibers	Tiles	Both
≧ 4	35	5.3	72
≧ 6	44	5.3	102

Submodule

- 32 channel
- 3x3 mm² SiPMs
- FEBA flex printed PCB
- MuTrig ASIC in BGA package
- Scintillator tiles Ej-228 ~6.5x6.5x5 mm³, two type (center and edge)
- ESR reflected foil, individual tile wrapping

Moudule

- 14 submodule mounted on the cooling structure
- Water cooling
- 448 channels

Recurl station

- 7 modules mounted on end rings
- Total length 36.8 cm
- 3136 channels
- Full detector phase I
 - 2 recurl station total of 6272 channels

ASIC development

- 32 channels muTrig ASIC developed in KIP HD (same front end of STiC 3.1)
- Gigabit serial data link (1.25 Gbps)

Two readout option:

- 48 bit/event (Tile detector):
 - both time and energy info
 - Event Rate limit: 20.24 MHz (632 kHz/ch)
- 27 bit/event (SciFi detector):
 - time info. + 1 bit energy info.
 - Event rate limit: 35MHz (1.1MHz/channel)

Technical prototype

<u>Goals</u>

- Produce a module as close to design as possible
- Test mechanical support
- ASiC integration
- Cooling tests
- Learn and develop tools for assembly
- Develop test benches for detector characterization and quality control
- Measure detector performance
- Finalize detector design

Front-end board

- Develop and produce the front-end board in the summer 2017
- Using the STiC 3.1 packaged ASIC (not MuTrig)
- Hamamatsu SiPMs S13360-3050PE

Temp. Sens.

Cool the ASIC from back side

Test board for the packaged ASICs

Tile individual wrapping

- Two type of tiles, Ej-228
- ESR 3M reflective foil
- The foil Foil design to maximize reflection
- Production in house using laser cutter
- Additional hole for monitoring the glue (might remove)
- The foil as a cover from the top and bottom

Wrapping tools

- Design 2 types of tools for different tile shapes
- 3D printed prototypes
- Will modified design for production

Tile wrapping procedure

March 8, 2018

Gluing tool and procedure

Gluing tool and procedure

Assembly steps

- ASIC test before equipping the PCB
- SiPM diode test before soldering
- DCR test of submodule with fully equipped board
- Wrapping of Tiles (each day for 4 submodule, single module ~1h)
- Gluing 4 submodule in parallel
- QA test in the lab

Test beam setup

- Two weeks ago at DESY
- Trigger submodule parallel to beam (passes 4 tiles)
- DUT perpendicular to beam with the option for rotation

Test beam setup

- Two weeks ago at DESY
- Trigger submodule parallel to beam (passes 4 tiles)
- DUT perpendicular to beam with the option for rotation

Detector performance

• View from the online monitor

ToT spectrum

- ToT spectrum looks promising!
- Low crosstalk -> wrapping concept works!

Trigger timing

- ASIC not optimize, only T-threshold scan
- Same HV for all channel
- Low energy cuts only $(\mu 3\sigma)$ and no time walk correction

Trigger timing

- ASIC not optimize, only T-threshold scan
- Same HV for all channel
- Low energy cuts only $(\mu-3\sigma)$ and no time walk correction

March 8, 2018

Outlook

- Technical prototype with 96 channel was built
- Assembly tools were design and tested
- Assembly procedure will be finalize soon
- First results looks promising
- Next step system readout integration

• Aim for vertical slice test by the end of the year (combine 3 detector system)

BK slides

Detector concept

- PSI Muon beam >10⁹ muons/s
- Helium atmosphere
- 1 T B-field
- Target double hollow cone

MuTrig characterization

- Customized LVDS TX: Opened eye diagram with 8b/10b encoded RPBS data pattern @ 1.25 Gbps
- Bit Error Rate (BER) upper limit of O(10⁻¹⁵) for bit rate up to 1.9 Gbps.

Two readout option:

- 48 bit/event (Tile detector):
 - both time and energy info
 - Event Rate limit: 20.24 MHz (632 kHz/ch)
- 27 bit/event (SciFi detector):
 - time info. + 1 bit energy info.
 - Event rate limit: 35MHz (1.1MHz/channel)

Jitter measurement:

- 460 fC charge injection over 15pF, input signal frequency up to 15MHz
- Use on-chip TDC for time stamp digitization

<u>Submodule</u>

- In total 32 channel
- 3x3 mm² SiPMs
- FEBA flex printed PCB
- MuTrig ASIC in BGA package
- Scintillator tiles Ej-228
 - ~6.5x6.5x5 mm³, two type (center and edge)
- ESR reflected foil, individual tile wrapping

<u>Moudule</u>

- 14 submodule mounted on the cooling structure
- Water cooling
- 448 channels

Recurl station

- 7 modules mounted on end rings
- Total length 36.8 cm
- 3136 channels

Full detector phase I

• 2 recurl station - total of 6272 channels

Pixel sensor

Ivan Perić, Nucl.Instrum.Meth. A582 (2007) 876-885

> Analog pixel electronics floats on sensor diode: monolithic design

Pixel sensor

Ivan Perić, Nucl.Instrum.Meth. A582 (2007) 876-885

- > Analog pixel electronics floats on sensor diode: monolithic design
- Industry standard HV CMOS process allows for E-field across diode ⇒ depletion zone of about 15 µm

Pixel sensor N-well E field P-substrate

Ivan Perić, Nucl.Instrum.Meth. A582 (2007) 876-885

The MuPix chip is such a **depleted MAPS**, thinned to $50 \,\mu\text{m} \approx 0.05\% \, x/X_0$

na / en

Scintillator tiles

- Using Ej-228
- Two type of tiles:
 - Central tiles- rectangle shape (6.3x6.2x5.0mm³)
 - Edge tiles trapezoidal shape (same base, top 7.44x6.2x5.0mm³)

Properties	Value	
Scintillation Efficiency (photons/1 MeV e)	10,200	
Wavelength of Maximum Emission (nm)	391	
Rise Time (ns)	0.5	
Decay Time (ns)	1.4	
Refractive Index	1.58	
Coefficient of Linear Expansion	7.8 x 10 ⁻⁵ below 67°C	
Light Output vs. Temperature Softening point	At 60°C, L.O. = 95% of that at 20°C No change from -60°C to 20°C 75°C	
Temperature Range	-20°C to 60°C	

The technical prototype: Cooling studies

Example results for highest power consumption:

The technical prototype: Cooling studies

- Repeat at different power consumption of the ASIC
- Very good agreement to data (<1°C
- Small systematic error (Integration area of the temp. sensor is too small)
- Next step full module (ongoing)

Front-end board

- Develop and produce the front-end board in the summer 2017
- Using the STiC 3.1 packaged ASIC (not MuTrig)
- Hamamatsu SiPMs S13360-3050PE

