An AHCAL-inspired ECAL for the DUNE Near Detector

Lorenz Emberger

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

CALICE Collaboration Meeting Mainz 2018

DUNE Experiment

• DUNE targets the precise study of neutrino mixing, including the potential discovery of CP violation

Far Detector: Liquid Argon TPC to measure oscillated spectrum - will see CP violation in v_e /anti- v_e appearance

<u>Near Detector</u>: Measures beam before oscillation, required to understand initial flux and cross sections to understand FD signal

Near Detector Tasks

- Measure the energy spectrum of the beam, background rates and contamination
 - Provide precise extrapolation of event rates in the far detector
- Largest errors arise from uncertainties in neutrino-nucleon scattering amplitudes
- Especially: v_{μ} -induced neutral current π^{0} production
 - Photons from the Pion decay can mimic v_e signal events
 - Excellent Photon detection and reconstruction is required
- High beam intensity gives rise to an extended physics program

Near Detector ECal

Possible layout: High Pressure Gaseous Argon TPC surrounded by an electromagnetic calorimeter and magnet

• Conversion probability for photons too low in TPC

 \rightarrow tracker based π^0 reconstruction not possible

- Our interest: Can high granularity help?
 - Try to reconstruct π⁰ decay vertex

<u>The Challenge</u>: Typical π^0 energies ~100MeV \rightarrow Photon energies ~50MeV

Detector Concept

Calorimeter design is inspired by CALICE Highly Granular Calorimeter

• Sampling calorimeter with active material segmented in 20mm x 20mm tiles (default)

Detector Concept

Calorimeter design is inspired by CALICE Highly Granular Calorimeter

- Sampling calorimeter with active material segmented in 20mm x 20mm tiles (default)
- Default layer structure:
 - 1mm lead absorber
 - 5mm plastic scintillator
 - Gap for electronics
- SiPM readout

Detector Concept

Look at the scenario of a split ECal to instrument space in the TPC pressure vessel

Possible vessel designs: 20mm Steel(~1X₀), 14mm Titan(~0.4X₀)

Inner ECal increases the chance to detect low energy photons

Simulation and Reconstruction

- Simulation is implemented in Geant 4.10.3
- Reconstruction:
 - 1. Apply 0.5 MIP energy cut and amplitude smearing to simulate readout noise
 - 2. Data preprocessing
 - 3. Calculate energy center of gravity in each layer
 - 4. Reconstruct direction with straight line fit of all centers of gravity
 - 5. Calculate angular and energy resolution
- In case of Pions:
 - 6. Use MC-truth to assign calorimeter cells to the photons from π^0 decay
 - 7. Reconstruct π^0 vertex

Energy resolution is an important parameter to compare different materials

Q

Energy resolution is an important parameter to compare different materials

4.8% stochastic term, will get worse by simulating more readout/electronics

Angular resolution has direct impact on photon pointing

1. Find the distribution of the angle between true and reconstructed direction for every energy

Angular resolution has direct impact on photon pointing

Angular resolution has direct impact on photon pointing

Both resolutions are used to compare the performance of the calorimeter

Influence of the Pressure Vessel

1mm lead absorber, Inner granularity: 20mm, Outer granularity: 40mm

Angular resolution

Energy resolution

Influence of the Pressure Vessel

1mm Lead absorber, Inner granularity: 20mm, Outer granularity: 40mm

Relative angular resolution

Relative energy resolution

Conclusion: Thin titanium pressure vessel yields better results

Influence of the Absorber

Inner granularity: 20mm, Outer granularity: 40mm, 14mm titanium vessel

Angular resolution

Energy resolution

Influence of the Absorber

Inner granularity: 20mm, Outer granularity: 40mm, 14mm titanium vessel

Relative angular resolution

Relative energy resolution

Conclusion: Copper yields better angular resolution, but 1mm copper is leaking very much energy

Influence of Inner Granularity

1mm Lead absorber, Outer Granularity: 40mm, 14mm Titanium vessel

Angular resolution

Relative angular resolution

Influence of Inner Granularity

1mm Lead absorber, Outer Granularity: 40mm, 14mm Titanium vessel

Angular resolution

Relative angular resolution

Conclusion: Granularity in first few X_0 has a major influence on overall angular resolution

• Take point of closest approach of the reconstructed tracks as decay vertex

Highly granular ECal in DUNE

2Ø

- 450MeV
- 1mm lead absorber
- Inner granularity 20mm, outer granularity 40mm

2X

2X

Hardware Studies

Several tiles with projective fiber readout ready/in production at the MPP

Hardware Studies

Several tiles with projective fiber readout ready/in production at the MPP

- 90x90x5mm scintillator Tile
- 8 fibers separated by 10mm
- Sub surface laser engraved optical barriers to separate channels
- SiPM readout for every fibre

Try to achieve higher granularity with crossed strip geometry

Hardware Studies

2**X**

Summary and Outlook

- Pressure vessel worsens energy resolution in general
 - 14mm Titanium has less negative impact than 20mm Steel
- Absorber material influences angular and energy resolution
 - Copper is better than lead
- \bullet Granularity in first few X_0 influences overall angular resolution
- Pion reconstruction can be improved with information on angular and energy resolution
- Hardware studies continue at MPP

Backup

26

Highly granular ECal in DUNE

Pi0 Distribution

plots curtesy of Chris Marshall

Highly granular ECal in DUNE

30mm Inner Tiles, 2mmCopper

Res_68Quantile_ODR

