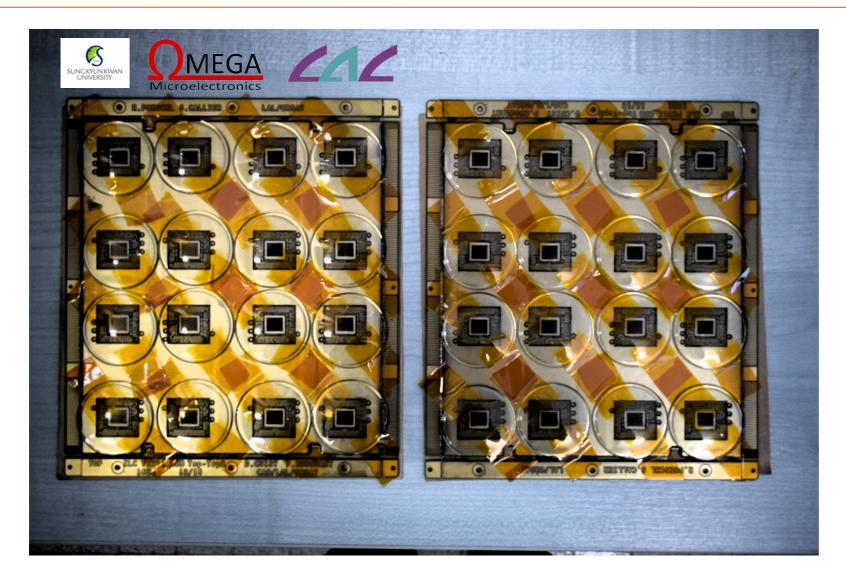


News from FEV COB

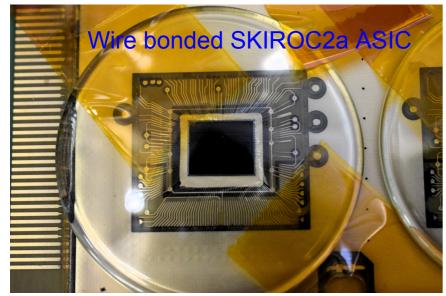
Roman Pöschl

... on behalf of

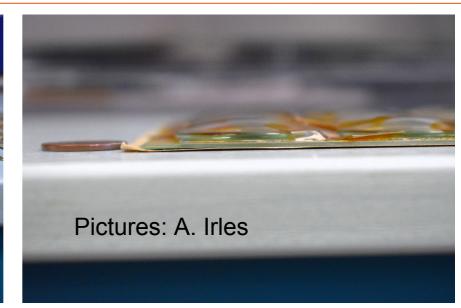


CALICE Meeting Mainz/Germany – March 2018

FEV11_COB available



- 10 PCBs ready since beginning of December 2017 (SKKU/EOS)
- 4 PCBs delivered to LAL in January 2018
- 2 PCBs bonded at CERN at beginning of February 2018
 - Excellent service at CERN
 - Contact with P2IO Platform CAP
- First COB Version that should be equipped with Si Wafers



Impressions FEV11_COB

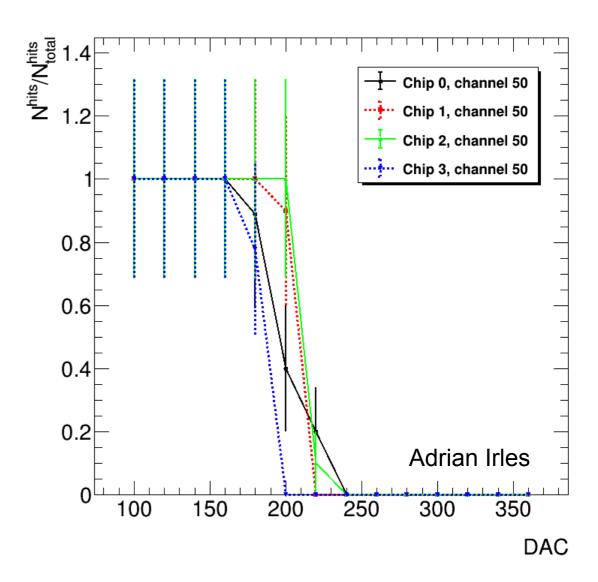
- Looks like a masterpiece, height 1.2mm (for a 9 layer board!!!)
- Planarity within specs for 4 out of 5 boards
 - (including mechanical prototypes from last autumn)
 - -> See next slide for examples of measurements
 - · Question with planarity seems to be solved
- Boards well rectangular
- Towards debugging of boards

Metrology FEV11_COB

No.	Line No			X-Coord. X-Angle	Y-Coord. Y-Angle	Z-Coord. Z-Angle	Diameter Dist./Ang.	Variance
		Tolerance	Ref.	Nominal	Up/Lo	Actual	Dev./Error	_
				planeit				
1	49				0.30	0.39	90 0.39	
		Planéité						>>
				largeur ext	erieur			
2	51	Point		180.000	0.20	179.89	-0.10	
		Position X			-0.20	0		***
			longue	ur interieur e	ntre ouvertu	re		
3	53	Point		180.000	0.20	180.24	45 0.24	0.045
		Position Y			-0.20	0		+>>
N	Li lo. N	ine Element	Pnt.	X-Coord. X-Angle	Y-Coord. Y-Angle	Z-Coord. Z-Angle	Diameter V Dist./Ang.	ariance
		Tolerance	Ref.	Nominal	Up/Lo	Actual	Dev./Error	
_				planeité				
	1	49 PLAN			0.300	0.299	0.299	
		Planéité						*****
				largeur exte	rieur			
	2	51 Point		180.000	0.200	179.863	-0.137	
		Position X			-0.200			_****
			longue	ur interieur er	ntre ouverture	1		
	3	53 Point		180.000	0.200	180.154	0.154	

-0.200

Position Y



First tests and S-Curves

- Both boards are configurable!!!
- Can extract S-Curves
 - Btw. First signals with integrated SKIROC2a
- Still issues in communication with boards, corrupted data streams (both directions)
- Need a few more debugging sessions with experts before serious test series can start
- No real showstopper observed and decision on next steps (e.g. equipment with wafers) in April

Summary and conclusions

- New version of FEV11_COB available to be equipped with Si wafers for validation of technology (Reminder still the only PCB design that could cope with current ILD constraints)
- Issue of planarity solved
- Excellent collaboration wirh SKKU and EOS Company (both South-Korea)
- First tests on test bench show no show stopper but still a way to go before serious testing
 - e.g Corrupted data streams
 - Debugging will resume after CALICE Meeting (Callier, Cornat, Irles, Jeglot)
- To be equipped with Si wafers for validation of technology

Backup

Power-Pulsing: New ultra-flat Capacitors!

We propose to use new ultra-flat capacitors to distribute over the ASUs, this will permit:

Peak current reduction: especially through the connectors No more voltage drop along the slab Homogeneous peak power dissipation during power pulsing.

We go from the 400 mF capacitor/ 12A (peak Current) for the whole SLAB to 140 mF / 1.2 A per ASU.

Reminder of power consumption values:

- DVVD (3.3V) 11 mA / Chip, Total 300 mA
- AVDD (3.3V) / Chip: 77 mA during ACQ, 20 mA during Conversion, 0.01 mA idle
- Distributing the capacitors along the slab permits reducing current between ASUs with a factor ~50-100.
- The current peak is local.
- The current delivered for charge reloading of the capacitors will be limited at the extremity of the Slab