

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

Status of the Electronics and Mechanics for the new large SDHCAL prototype

Mary-Cruz Fouz (CIEMAT) for the SDHCAL group

CALICE Week. Shanghai 20/09/2018

To build a **new prototype with a mechanical structure of 4 plates of ~1x3m²** (assembled with similar procedures to the final one) where inserting large **RPCs equipped with a new improved electronics.**

CALICE Week, Shanghai Sept 2018

To enlarge them to the maximum size (~3x1m2) expected at ILD, implies new challenges for the detector, embedded electronics and mechanics

The ~1m3 prototype built in the past was based of layers of plates absorbers of ~1m2.

Endcapi Endcapi Endcapi Endcapi

Introduction: The new SDHCAL prototype

Module of the second se

The goal

The seal

2

CALICO

Status of electronics (DIF)

CALICE Week, Shanghai Sept 2018

A *central PC* collects data from all the *ASUs* (containing de *ASIC chips*) through an *Ethernet switch* acting in such a way as data concentrator and generates the required commands for *ASU* and *DIF* configuration generating at the same time synchronization signal required for a correct data acquisition process.

Calorimetry for detectors at future colliders. ILD SDHCAL prototype - Electronics

DIF (Detector InterFace) sends DAQ commands (config, clock, trigger) to front-end and transfer their signal data to DAQ. It controls also the ASIC power pulsing

Once the data are acquired are transfer back to the microprocessor through a parallel link and back to the DAQ.

6

CALICO

🖲 AIDA

- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors (vs 8.6 W in previous DIF)
- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0

) iemo

DIF + ASU under tests

7

CALICO

🆲 AIDA

70 cm

CALICE Week, Shanghai Sept 2018

Java Aplication

- > A Java application has been designed to test the different functionalities of the DIF and ASU boards.
 - The application communicates with DIF using the Ethernet link.
 - The user can read and write the registers of the different ICs (power supply, temperature, TTC) and those implemented registers using the microcontroller and FPGA. On the other hand, it is possible to read and write the registers of the HARDROC and 1wire chips.

	S DIF TEST			
	Power Supply Temp	erature TTC AS	3U 1-Wire FPGA	EEPROM
	ASU		Ethernet	Exit
	ASU 1	Line HR3 Offset Length	n HR3 TE Cfg HR3 Rd	HR3 Wr
ASU Configuration			Global Load	Local Load
Enable Power Pulsing CTest Preamp Gain Mask0b Mask1b Mask2b DAC0	 ✓ SS Feedback Cap0 ✓ SS Feedback Cap1 ✓ SS Feedback Cap2 FSB Sel 0 FSB Sel 1 	 OtaQ Mode (1 Test / 0 Normal) Discriminator Output (1 Latched / 0 Di Select out_trgb (1 Global OR / 0 Chn I Fast Clock Selection (1 PLL / 0 40MH: Start Readout Selection (1 1 / 0 2) End Readout Selection (1 1 / 0 2) PLL Mode (1 Normal / 0 VCO Test) 	Pirect) Discri) (z) PLASH FLASH Rd FLASH Rd FLASH Glb Prg Verify Local Verify	RAM Wr FLASH Prg Global Verify
DAC1 DAC2 FSB Feedback	Select Trig0 for Memory Writing Select Trig1 for Memory Writing Select Trig2 for Memory Writing	PLL Factor (031) 7		
Set to default	Read from File Write to F	ile Save Exit		

All the functionalities of both boards can be tested using this application

Another Java application has been developed to allow the remote programming of the FPGA memory Other allowed actions are: blank checking, erasing, etc.

DIF Status

Documentation:	Schematics and Layout	
Fabrication & Assembly:	4 DIFs fully assembled and operational	\checkmark
Firmware development:	 Micro-processor Ethernet communication FPGA communication Data acquisition FPGA I²C Synchronization Power Pulsing Data acquisition 	$\begin{array}{c} \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \mathbf{X}\\ \sqrt{}\end{array}$
	 Power FPGA Micro-Processor TTC Synchronization / commands Power Pulsing Old slow control test with ASU I2C slow control test with ASU Data acquisition test with ASU 	√ √ √ / X X √ Ongoing X

DIF Remaining tests

ASU board \rightarrow most of these tests requires one ASU. A new design (100 x 33 cm) is being used. **This board is being tested and debugging in parallel with the DIF.**

- Power Pulsing (PP) mode → PP will be tested using one ASU and simulating powering ON the ASICs during the beam and powering OFF the rest of the time.
- I²C communication → it *doesn't work with the new ASU* but it works *using a different HARDROC3 (HR3) board* provided by IN2P3 (Lyon). So, we are looking into the problem.
- Data acquisition → it will be tested the data transmission from HR3 to the DIF and sending data to the DAQ using Ethernet.
- **TTC commands** in the synchronization part.

Status of the Mechanical structure absorber

Plates need to be very flat for reducing the extra tolerance space for the GRPC insertion

Plates production & Quality Control

A

The best standard plates in the market have a larger planarity (**~several mm**) than the required one (<1mm)

Planarity achieved using roller leveling at ARKU Baden-Baden (Germany) <u>www.arku.de/</u>

5 Plates available Initial planarity between 1 and 3mm Final planarity inside the required tolerances

Measurements using laser interferometer. Over a flat table (0.1mm planarity)

- Г	Dlanawity				b					
Planarity		Plate A			Plate B			Pla	Plate C	
	(µm)		1 up Side 2 up		2 up	Side 1	up	Side 2 u	p Side 1 up	Side 2 up
1	Average		469,3 852,6		511,6		596,	3 983,4	1038,0	
			Plate D		Plate E			Very		
			1 up	Side 2	2 up	Side 1	up	Side 2 u	p 🗸	Good
			458,7		46,1	610,2		521	,9	8
ം	Plate			Α		В		С	D	E
les	Average (mm)		1	5,324		15,233		15,334	15,225	15,322
Thickr	max (mm)		1	5,324		15,292		15,348	15,270	15,325
	min (mm)		1	5,323		15,173		15,320	15,179	15,318
	Δ (mm)			0,001		0,119		0,028	0,091	0,007

CALICE Week, Shanghai Sept 2018

M.C Fouz

Tests with smaller prototypes and special pieces

In order to optimize the procedure before welding the bigger prototype 4 smaller prototypes of different sizes (4 plates 0.8x1m2, 4 plates 0.4x1m2) and several special pieces has been welded with *different welding sequences and machine parameters*.

They allow to make several cheaper tests, changing the sequences and depth of welding in order to find the procedure producing the lowest deformation.

CALICE Week, Shanghai Sept 2018

CALICO

) AIDA

Mechanical Structure: Welding procedure

15

CALICO

CALICE Week, Shanghai Sept 2018

deformations

Firsts small prototypes

→ First small prototype: 4 plates 1x1 m2

After comparing the measurements before and after welding deformations found (~1mm) bigger than expected in X-axis. O.K in Y-axis → Probably due to the welding sequence used

1st Prototype after welding

→ Second small prototype: 4 plates 1x0.5 m2

Welding performed **changing a bit the welding sequence** with respect to the previous prototype

The deformation in X is still a bit large.

Several tests with the special pieces should help on improving the procedure to decrease the deformation

CALICE Week, Shanghai Sept 2018

Last small prototypes

Two new small prototypes have been welded following the new welding procedures and 10mm penetration (previously 5mm)

Deformation induced by welding -> Position After EBW – Pre-assembled vs Photogrammetry target number

Even using a double penetration (10 vs 5 mm) which will make bigger deformation (but more robust) the **deformations are lower for new prototypes** (using optimized machine parameters and welding sequence)

Pre-assembling of the mechanical absorber structure prototype

Structure pre-assembled and prepared for photogrammetry measurement at CIEMAT

TACK Welding sequence (Secuencia del punteado de la soldadura):

- 1.- Side A, Tack welding, penetration 2 mm: 4.18, 3.18, 3.1, 4.1, 4.9, 3.9, 3.5, 4.5, 4.13, 3.13. (Rotation 180° around Y axis)
- 2.- Side A, Tack welding, penetration 2 mm: 4.35, 3.35, 3.27, 4.27, 4.23, 3.23, 3.31, 4.31.
- 3.- Side B, Tack welding, penetration 2 mm: 4.18, 3.18, 3.1, 4.1, 4.9, 3.9, 3.5, 4.5, 4.13, 3.13. (Rotation 180° around Y axis)
- 4.- Side B, Tack welding, penetration 2 mm: 4.35, 3.35, 3.27, 4.27, 4.23, 3.23, 3.31, 4.31, 6.18, 1.18, 1.35, 6.35, 6.27, 1.27, 1.31, 6.31, 6.23, 1.23. (Rotation 180° around Y axis)
- 5.- Side B, Tack welding, penetration 2 mm : 6.1, 1.1, 1.9, 6.9, 6.5, 1.5, 1.13, 6.13.
- 6.- Side A, Tack welding, penetration 2 mm: 6.18, 1.18, 1.35, 6.35, 6.27, 1.27, 1.31,6.31, 6.23, 1.23. (Rotation 180° around Y axis)
- 7.- Side A, Tack welding, penetration 2 mm: 6.1, 1.1, 1.9, 6.9, 6.5, 1.5, 1.13, 6.13, 5.18, 2.18, 2.1, 5.1, 5.9, 2.9, 2.5, 5.5, 5.13, 2.13. (Rotation 180° around Y axis)
- 8.- Side A, Tack welding, penetration 2 mm: 5.35, 2.35, 2.27, 5.27, 5.31, 2.31, 2.23, 5.23.
- 9.- Side B, Tack welding, penetration 2 mm: 5.18, 2.18, 2.1, 5.1, 5.9, 2.9, 2.5, 5.5, 5.13, 2.13. (Rotation 180° around Yaxis)
- 10.- Side B, Tack welding, penetration 2 mm: 5.35, 2.35, 2.27, 5.27, 5.31, 2.31, 2.23, 5.23. (Rotation 180° around Y axis)

(REMOVE lateral reinforcements on SIDE A & B)

EBW Sequence

Final welding sequence defined after all the tests and verifications using smaller prototype and specific pieces

Welding sequence (Secuencia de la soldadura):

- **11.- Side B, Welding, penetration 10 mm:** 4.17, 3.17, 3.2, 4.2, 4.10, 3.10, 3.4, 4.4, 4.14, 3.14, 3.12, 4.12, 4.6, 3.6, 3.3, 4.3, 4.16, 3.16, 3.11, 4.11, 4.7, 3.7, 3.8, 4.8, 4.15, 3.15, 3.18, 4.18, 4.1, 3.1, 3.9, 4.9, 4.5, 3.5, 3.13, 4.13. (Rotation 180° around Y axis)
- 12.- Side B, Welding, penetration 10 mm: 4.19, 3.19, 3.34, 4.34, 4.26, 3.26, 3.32, 4.32, 4.22, 3.24, 4.24, 4.30, 3.30, 3.33, 4.33, 4.20, 3.20, 3.25, 4.25, 4.29, 3.29, 3.28, 4.28, 4.21, 3.21, 3.35, 4.35, 4.27, 3.27, 3.31, 4.31, 4.23, 3.23.
- 13.- Side A, Welding, penetration 10 mm: 4.17, 3.17, 3.2, 4.2, 4.10, 3.10, 3.4, 4.4, 4.14, 3.14, 3.12, 4.12, 4.6, 3.6, 3.3, 4.3, 4.16, 3.16, 3.11, 4.11, 4.7, 3.7, 3.8, 4.8, 4.15, 3.15, 3.18, 4.18, 4.1, 3.1, 3.9, 4.9, 4.5, 3.5, 3.13, 4.13. (Rotation 180° around Y axis)
- **14.- Side A, Welding, penetration 10 mm:** 4.19, 3.19, 3.34, 4.34, 4.26, 3.26, 3.32, 4.32, 4.22, 3.22, 3.24, 4.24, 4.30, 3.30, 3.33, 4.33, 4.20, 3.20, 3.25, 4.25, 4.29, 3.29, 3.28, 4.28, 4.21, 3.21, 3.35, 4.35, 4.27, 3.27, 3.31, 4.31, 4.23, 3.23, 6.19, 1.19, 1.34, 6.34, 6.26, 1.26, 1.32, 6.32, 6.22, 1.22, 1.24, 6.24, 6.30, 1.30, 1.33, 6.33, 6.20, 1.20, 1.25, 6.25, 6.29, 1.29, 1.28, 6.28, 6.21, 1.21, 1.35, 6.35, 6.27, 1.27, 1.31, 6.31, 6.23, 1.23. (Rotation 180° around Y axis)

15.- Side A, Welding, penetration 10 mm: 6.17, 1.17, 1.2, 6.2, 6.10, 1.10, 1.4, 6.4, 6.14, 1.14, 1.12, 6.12, 6.6, 1.6, 1.3, 6.3, 6.16, 1.16, 1.11, 6.11, 6.7, 1.7, 1.8, 6.8, 6.15, 1.15, 1.18, 6.18, 6.1, 1.1, 1.9, 6.9, 6.5, 1.5, 1.13, 6.13, 6.13, 6.14, 1.14, 1.12, 6.12, 6.12, 6.6, 1.6, 1.3, 6.3, 6.16, 1.16, 1.11, 6.11, 6.7, 1.7, 1.8, 6.8, 6.15, 1.15, 1.18, 6.18, 6.1, 1.1, 1.9, 6.9, 6.5, 1.5, 1.13, 6.13, 6.13, 6.14, 1.14, 1.12, 6.12, 6.12, 6.6, 1.6, 1.3, 6.3, 6.16, 1.16, 1.11, 6.11, 6.7, 1.7, 1.8, 6.8, 6.15, 1.15, 1.18, 6.18, 6.1, 1.1, 1.9, 6.9, 6.5, 1.5, 1.13, 6.13, 6.13, 6.14, 1.14, 1.12, 6.12, 6.12, 6.15, 1.15, 1.16, 1.11, 6.11,

16.- Side B, Welding, penetration 10 mm: 6.19, 1.19, 1.34, 6.34, 6.26, 1.26, 1.32, 6.32, 6.22, 1.22, 1.24, 6.24, 6.30, 1.30, 1.33, 6.33, 6.20, 1.20, 1.25, 6.25, 6.29, 1.29, 1.28, 6.28, 6.21, 1.21, 1.35, 6.35, 6.27, 1.27, 1.31, 6.31, 6.23, 1.23. (Rotation 180° around Y axis)

17.- Side B, Welding, penetration 10 mm: 6.17, 1.17, 1.2, 6.2, 6.10, 1.10, 1.4, 6.4, 6.14, 1.14, 1.12, 6.12, 6.6, 1.6, 1.3, 6.3, 6.16, 1.16, 1.11, 6.11, 6.7, 1.7, 1.8, 6.8, 6.15, 1.15, 1.18, 6.18, 6.1, 1.1, 1.9, 6.9, 6.5, 1.5, 1.13, 6.13, 5.15, 2.15, 2.15, 2.15, 2.15, 2.18, 5.18, 5.1, 2.1, 2.9, 5.9, 5.5, 2.5, 2.13, 5.13, (Rotation 180° around Y axis)

18.- Side B, Welding, penetration 10 mm: 5.19, 2.19, 2.34, 5.34, 5.26, 2.26, 2.32, 5.32, 5.22, 2.22, 2.24, 5.24, 5.30, 2.30, 2.33, 5.33, 5.20, 2.20, 2.25, 5.25, 5.29, 2.29, 2.28, 5.28, 5.21, 2.21, 2.35, 5.35, 5.27, 2.27, 2.31, 5.31, 5.23, 2.23.

19.- Side A, Welding, penetration 10 mm: 5.17, 2.17, 2.2, 5.2, 5.10, 2.10, 2.4, 5.4, 5.14, 2.14, 2.12, 5.12, 5.6, 2.6, 2.3, 5.3, 5.16, 2.16, 2.11, 5.11, 5.7, 2.7, 2.8, 5.8, 5.15, 2.15, 2.18, 5.18, 5.1, 2.1, 2.9, 5.9, 5.5, 2.5, 2.13, 5.13, (Rotation 180° around Y axis)

20.- Side A, weited to the alferent to the arg to a for a fo

Electron Beam Welding of the Demonstrator

Introduction of the pre-assembled absorber structure inside the EBW machine at CERN

Participation of the CIEMAT mechanical engineer (E.Calvo) and two CIEMAT technicians (J.García, C.Puras) for helping the CERN people.

The procedure needs to **rotate** and place the structure in **several positions** inside the EBW machine to allow the welding cover both sides and the full 3m length.

Demonstrator after welding

CALICE Week, Shanghai Sept 2018

21

CALICO

🖲 AIDA

Insertion tests

We have inserted an empty cassette (smaller length ~1m but same thickness) to check the future insertion of the new larger GRPCs.

CALICE Week, Shanghai Sept 2018

Final results on deformations

- > The results from the photogrammetry done at CERN are not yet available (should be in some days)
- > The structure has came back to CIEMAT and some measurements have been performed

Data are being analyzed now but the preliminary results are very promising, showing deformations smaller than for the small prototypes. The results need also the crosscheck with the measurements done at CERN.

The structure of the final deformation should still better understood

