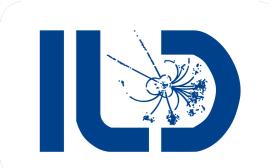

News from the LCC Physics WG: What's the role of **positron polarisation** at 250 GeV?

J. List,
ILD Software & Analysis Meeting
8.11.2017

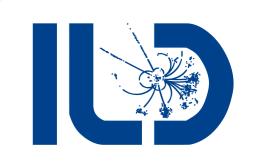
Reminder

- positron polarisation was never a hard requirement,
 but considered a beneficial add-on
- the undulator source was not chosen as baseline because of its capability to deliver a polarised beam, but for technical & cost reasons
- for the case the technical and/or cost preference would change, Lyn Evans asked the Physics & Detector community to specify the impact of positron polarisation on the physics program **at 250 GeV**

This is not the first time...


	Effects for $P(e^-) \longrightarrow P(e^-)$ and $P(e^+)$	Gain w.r.t. (80%,0%)& Requirement			
$(P(e^-), P(e^+))$		(90%,0)	(80%,60%)	(80%,30%)	
Statistics:					
$P_{ m eff}$	V,A processes	90%	95%	94%	
$\mathcal{L}_{ ext{eff}}/\mathcal{L}$	# of interacting particles	_	×1.5	×1.2	
$\Delta A_{LR}/A_{LR}$	due to error propagation	0	×3	×2	
Standard Model:					
top threshold	Electroweak coupling measurement	0	× 3	× 2	
$tar{q}$	Limits for FCN top couplings improved		× 1.8	× 1.4	
CPV in $t\bar{t}$	Azimuthal CP-odd asymmetries give	_	$P_{e^-}^{\mathrm{T}}P_{e^+}^{\mathrm{T}}$	$P_{e^{-}}^{\rm T} P_{e^{+}}^{\rm T} \times 0.8$	
	access to S- and T-currents up to 10 TeV				
W^+W^-	TGC: error reduction of $\Delta \kappa_{\gamma}$, $\Delta \lambda_{\gamma}$, $\Delta \kappa_{Z}$, $\Delta \lambda_{Z}$?	×1.8	?	
	Specific TGC $\tilde{h}_+ = \operatorname{Im}(g_1^{\mathrm{R}} + \kappa^{\mathrm{R}})/\sqrt{2}$	_	$P_{e^-}^{\mathrm{T}}P_{e^+}^{\mathrm{T}}$	$P_{e^{-}}^{T}P_{e^{+}}^{T} \times ?$	
CPV in γZ	Anomalous TGC $\gamma\gamma Z$, γZZ	_	$P_{e^-}^{\mathrm{T}}P_{e^+}^{\mathrm{T}}$	$P_{e^-}^{\mathrm{T}} P_{e^+}^{\mathrm{T}} \times ?$	
HZ	Separation: $HZ \leftrightarrow H\bar{\nu}\nu$?	$\times 4$	× 2	
	Suppression of $B = W^+ \ell^- \nu$?	×1.7	?	
$tar{t}H$	Top Yukawa coupling at $\sqrt{s} = 500 \text{ GeV}$?	×2.5	×1.6	

This is not the first time...


	Effects for $P(e^-) \longrightarrow P(e^-)$ and $P(e^+)$	Gain w.r.t. (80%,0%)& Requirement		
$(P(e^-), P(e^+))$		(90%,0)	(80%,60%)	(80%,30%)
Supersymmetry:				
$\tilde{e}^+\tilde{e}^-$	Quantum numbers L, R and Yukawa	_	$P_{e^-}P_{e^+}$	$P_{e^-}P_{e^+}{ imes}0.6$
$ ilde{\mu} ilde{\mu}$	S/B , $B=WW o \Delta m_{\tilde{\mu}_{\rm L,R}}$ in cont.	?	×5-7	?
HA , $m_A > 500 \text{ GeV}$	Access to difficult parameter space	?	×1.6	?
CPV in $\tilde{\chi}_i^0 \tilde{\chi}_i^0$	Direct CP-odd observables	_	$P_{e^-}^{\mathrm{T}}P_{e^+}^{\mathrm{T}}$	$P_{e^{-}}^{T}P_{e^{+}}^{T} \times ?$
RPV in $\tilde{\nu}_{\tau} \rightarrow \ell^{+}\ell^{-}$	Test of spin: S/B , S/\sqrt{B}	?	×10	?
Extra Dimensions:				
$G\gamma$	Enhancement of S/B , $B = \gamma \nu \bar{\nu}$,	?	×3	?
$e^+e^- o f \bar{f}$	Unique distinction ADD vs. RS	-	$P_{e^-}^{\mathrm{T}}P_{e^+}^{\mathrm{T}}$	$P_{e^{-}}^{ m T} P_{e^{+}}^{ m T} { imes} 0.5$
New gauge boson Z':				
$e^+e^- o f \bar{f}$	Measurement of Z' couplings	?	×1.5	?
Contact interactions:				
$e^+e^- \rightarrow e\bar{e}$	Model independent bounds	-	$P_{e^-}P_{e^+}$	$P_{e^-}P_{e^+} \times ?$
Precision measuremen	ts of the Standard Model at GigaZ:			
Z-pole	Improvement of $\Delta \sin^2 \theta_W$?	× 10	×5 (?)
	Improvement of Higgs bounds	?	×10	?
	Constraints on CMSSM parameter space	?	×5	?

- LHC results
- 250 GeV running
- new ILC studies
- new interpretations (eg EFT approach)

Plan

- Jim Brau requested an additional section for the recent 250-GeV-physics-case document
- time scale: ~ 4 weeks
- Michael Peskin asked JL to organise this and write a first draft
- will call for a phone meeting with all interested people (exp + theo) very soon

=> if YOU would like to give input / take part in discussions etc, please send me an email!