News from ILD Meeting

Karsten Buesser

Mini-Workshop on ILC Infrastructure for Physics and Detectors KEK, 23.02.2018

Karsten Buesser - Mini-Workshop on ILC Infrastructure for Physics and Detectors - 23.02.2018

ILD Meeting

- February 20-22 2018 at Ichinoseki
- 64 registered participants
- Concentrated discussions about preparing the ILD concept for a positive decision on the ILC

ILD and the IR

ILD Requirements

- IR design is being adapted to local conditions
- Decisions must be based on requirements!
- In focus:
 - Space for detector services and utilities
 - Assembly space
 - IT infrastructure
 - Power requirednts

IP site selection IP campus design Requirements

Power!

- Power estimates for ILD are very rough and have been done a long time ago
 - Based on a rough scaling from LHC experiments
- More detailed numbers exist for CLIC detector study
 - •~3 MW
 - But different power pulsing scheme
- Need to do a bottom-up study within ILD to come to more reliable numbers
- Power for detectors at IP campus cannot be neglected!

LCD-Note-2013-011

CLIC Detector Power Requirements

A. Gaddi¹⁾, D. Dannheim¹⁾

¹⁾CERN, Geneva, Switzerland

		1
System	Power [kW]	Note
Detector Magnet	900	cryogenics + powering
Front-End Electronics	<10	
DAQ Electronics	<10	
Off-line electronics	1000	
Detector Electronics Total	1020	
Cooling	500(w) - 750(s)	(w) = winter, (s) = summer
HVAC	600(w) - 400 (s)	
Detector Total	3050	
Table 6: LC	Detector power require	ments estimate.

Where is the IP?

- Two IP candidate areas
- One more flexible, the other associated with less cost
- Decision can only be done based on requirements

Can't pin down IP

surface design IP area 78,500m² 1 to be further discussed specially with LCC-MDI,

> Water chiller & pumps Air intake/exhaust

research building

computing building

©Rey.Hori/KEK

surface design IP area 78,500m² 1 to be further discussed specially with LCC-MDI. Water chiller & pumps Air intake/exhaust research building Assembly Building? Requirements!

computing building

©Rey.Hori/KEK

Underground Areas

Karsten Buesser - Mini-Workshop on ILC Infrastructure for Physics and Detectors - 23.02.2018

Y. Sugimoto

5

10

Detector Platform

: Space for electronics racks

Survey for Sub-Detectors Requirements in Preparation

Items to be clarified

- Electronics (19 inch) racks ullet
 - Number and location (platform, service gallery, or somewhere) else)
 - AC power (Quite large power consumption (>1 MW) for CMS o ATLAS. What about in the ILD case?)
 - Heat loss (= AC power-DC power to the detector)
- Sub-detector cooling system •

 - Location (Utility/Service Cavern?) and space requirement - Request for the cooling water (LCW, chilled, or normal?, how much power?) for the Žnd loop of the cooling system
- Gas system \bullet
 - Location and space requirement
- Laser system •
 - Location (Utility/Service Cavern?) and area
- PC farm for data processing (data reduction, event build, etc.) \bullet
 - Location (Underground or surface?) and area
 - AC power consumption

Items to be clarified

An excel file for survey is under construction

			VTX	SΠ	FTD	TPC	ECAL	AHCAL	SDHCAL	Muon	FCAL	PC farm	0
		Number											
	P atform	AC power(kW)											
		Heat bss (kW)											
		Number											
	Service gallery	AC power (kW)											
Ebotropics Backs	tronics Racks	Heat bss (kW)											
		Number											
U/S cavern	U/S cavern	AC power(kW)											
		Heat bss (kW)											
		Number											
S	Surface	AC power(kW)											
		Heat bss (kW)											
Space requirement	Space requirement	Location											
	WixDixH (m_^3)												
svstem		AC power(kW)											
Cooling water	Cooling water	Туре										_	
		Heat bad (kW)											
	P atform	W xD (m ^2)										_	
Gas system	Service gallery	W.xD (m.^2)										_	
	U/S cavern	WxD (m^2)										_	
	Surface	WxD (m^2)										_	
l aser system	Space requirement	Location										_	
Eddor oyowii		WxD (m^2)										_	
	DC power supply	AC power(kW)											
	Cooling water for	Туре											
	power supply	Heat bad (kW)											
	C ryogen ics	AC power(kW)											
M agnet anc illaries	Space requirem ent	Location W xD xH (m^3)											
	Cooling water for	Туре											
	cryogenics	Heat bad (k₩)											
	Cooling water for	Туре											
	dum p resister	Heat bad ⟨k₩)											

Y. Sugimoto

-line	Solenoid	Q F 1

ILD Engineering Model

ILD Engineering Model

- An integrated model of ILD had been developed for the Lol, updated for the DBD
- The model is under control of Christian Bourgeois and Alexandre Gonnin (LAL)
- Kept in ILC-EDMS (DESY)

ILD Engineering Model Update

- Good reasons to update the technical model:
- Changes in ILD geometry:
 - new forward region (L*)
 - two options large and small ILD
- More realism:
 - better understanding of electronics (cables!)
 - more detailed mechanical models
 - more realism w.r.t. boundary conditions
 - integration with the machine at Kitakami site
 - seismic issues
 - local regulations on safety etc.
- Enable technical studies on options
 - e.g. Tesla vs Videau HCAL structure
- Give best possible input for physics simulations on dead zones, support structures, etc.

ILD Interface Documents

Document on ILD Actual ICD **Conventions and rules** Ref. : ????? IIC International linear callider ILD conventions and rules Ed.: 0 IC international linear collider Template Rev. : 3 Date: 21/10/16 Page : 1/8 **Interface Control Document Template** ILD conventions and rules XXXXXXXXX (Sub detector name) ILD Prepared by Prepared by Accepted by Signature Signature **Roman Pöschl** Approved by Function Approved by Date Signature Summary Summary Annexes nnexes **Document Change Record** Edition Revision Modified pages Edition Revision Observations Date 1 0 0 1 21/10/16 all Creation Distribution Distribution See Distribution list at the end of this document Template V1.0

Obligatory document: Author: Central Integration Group

Three documents

Interface Control Document Template	Ref. : Ed. : 1 Rev. : 0 Date:	Page : 1/9
--	--	------------

Prepare	Signature	6	Accepted by	Signature
Mar				
Approv	Signature	Date	tion	Function
Summar				
Annexes		A	nt Change Record	Documon
	servations	u Ob	Iodified pages	Date Mo
E				
	nent	l of this docum	tion list at the end	See Distributi
Distribu				
	Template V1.0			
	Template V1.0			

Technical Design Document
of subdetector

Prepared	by		Signature	SiEcal Accepted by		Signature
Marc Henri	Anduz Videa	u u				
Approved by Fu			Func	tion	Date	Signature
ummary			Doct	ument Change Rec	ord	
Edi	tion 0	Revision 1	Date 7/10/16	Modified pages all	Ot	oservations

Obligatory document Author: Subdetector group

Optional document (Highly recommended) Author: Subdetector group -> See talks by Henri and Marc

R. Poeschl

Convention and Rules Document

- Drafted by conveners of Central Design and Integration Group:
 - KB, R. Poeschl, T. Tauchi
- Still work in progress
- Meeting at DESY on December 20/21 2017 to work on document:
 - Draft 0.3.1 Available on EDMS:
 - EDMS ID : D*1156315, D, 1, 2
 - <u>https://edmsdirect.desy.de/item/D0000001156315,D,1,2</u>

if international linear collider

ILD conventions and rules Document

Ref.: ????? Ed.: 0 **Rev.:3** Date: 24/04/16

Page : 1/11

ILD conventions and rules

ILD

Prepared by	Signature	Accepted I	by	Signature
Roman Pöschl,	Karsten Büßer, Toshiaki Tauchi	Claude	Vallée	
				~

Approved by	Function	Date	Signature
Ties Behnke			

Summary

Annexes

Document Change Record								
Edition	Revision	Date	Modified pages	Observations				
0	1	21/10/16	all	Creation				
0	3	20/12/17	all					

Distribution

See Distribution list at the end of this document

Contents

- Definition of Names and Units
- The ILD Coordinate System
- Mechanical Constraints
 - every component has to stick to its envelope
 - only CDI group can change envelopes
 - shared spaces (cable paths, etc.) under control of CDI group
 - safety!
- Electrical, Cooling, Other Services
 - electrical and cooling requirements for each component
 - remove your heat yourself!
 - general cabling scheme under control of CDI group

- External Constraints
 - site-specific, accelerator related
- Transportation and Assembly
 - 25t limit, 80t exceptionally
- Legal Issues and Other Constraints
 - collection of Japanses rules on safety etc.
 - electrical standards (60/50 Hz!)

Electrical Power Jorvillastersolster Mechanical forces

- W N
- Problem: define horizontal plane. Usually done as the plane in which the beams are, but this could be tilted (beams traverse solenoid field under horizontal crossing angle). Now: relate to gravitational vector.

Let **p**- and **p**+ be the nominal axes of the incoming electron (-) and positron (+) beam momenta.

handed coordinate system.

if it is left-handed then $\theta_{cr} < 0$. Note that θ_{cr} will always have the same sign as p_x - and p_x +.²

- The origin of the ILD coordinate system is the nominal ILC interaction point, as defined by the machine lattice. The vertical y-axis is anti-parallel to the gravitational acceleration \mathbf{g} at the interaction point. The horizontal plane is the plane that is normal to the y-axis and contains the nominal interaction point¹. The mean beam direction is the bisecting line of the (smaller) angle between p- and p+. The z-axis is the projection of the mean beam direction onto the horizontal plane. The x-axis completes a Cartesian right-
- The crossing angle, here denoted by θ_{cr} , is defined as follows: $\theta_{cr} \in (-\pi, +\pi]$ is the angle by which **p+** has to be rotated around the y-axis such that it becomes antiparallel to p-. If the rotation is right-handed then $\theta_{cr} > 0$,
- Note: translation of coordinate system into the detector for alignment needs to be discussed.

ILD Coordinate System

• To Do: 3D graphics

Page : 6/11

Interface Control Documents - Status

Subdetector	
VTX	in progress
SIT/FTD/ETD	discussions have started
TPC	draft on EDMS
Si-ECAL	draft on EDMS
Sc-ECAL	draft on EDMS
A-HCAL	discussions have started
SD-HCAL	in progress
FCAL	draft on EDMS
Yoke/Muon	???
ILD Conventions/Rules	draft on EDMS

Karsten Buesser - Mini-Workshop on ILC Infrastructure for Physics and Detectors - 23.02.2018

Cables and Services

Cable Paths

- Defined for DBD (were different for Lol)
- Central Detector:
 - via endcap/barrel region around coil through gap between yoke rings
- End Caps:
 - via endcap/barrel region along yoke endcap
- Forward Calorimeters
 - along QD0 magnet

Barrel-Endcap Gap

- "Trenches" between AHCAL electronics
- Completely occupied by services (cables and cooling)
 - TPC
 - ECAL
 - AHCAL

Gap : Barrel-endcaps C. Clerc, 2010 Hcal= 100 cm² 8 ways TPC cables = 10 cm^2 Ecal Barrel cables= 30 cm² Ahcal Elec. Board (7 cm) Hcal Barrel Ecal Endcaps cables = 7 cm² Ecal cooling (Barrel) = 3* 14 cm² Mechanical support

ILD integration meeting, CERN

18/10/2010

AHCAL Services - Recent Updates

Detailed design of the AHCAL services:

Gap : Barrel-

AHCAL Services - Recent Updates

Detailed design of the AHCAL services:

Karsten Buesser - Mini-Workshop on ILC Infrastructure for Physics and Detectors - 23.02.2018

Gap : Barrel-

AHCAL Services - Recent Updates

Detailed design of the AHCAL services:

Karsten Buesser - Mini-Workshop on ILC Infrastructure for Physics and Detectors - 23.02.2018

Cables and Services Outlook

- the Interface Control Documents soon
- Setup a small working group on services to
 - Check existing ILD model for cables and services
 - Update requirements
 - Adapt global cable paths and shared spaces for both, large and small ILD
 - Work on open questions:
 - where are the patch panels?
 - other infrastructure, e.g. DC/DC converters?
 - do cable require cooling?
 - Where will the external infrastructure go (electronics, gas systems, etc.)

•

We will have a current idea about the subdetector requirements for cables and other services from

ILD Technical Documentation

Interface to EDMS

- Everyone can use EDMS now!
- Go to: <u>edmsdirect.desy.de</u> -> "ILD TDR"
 - linked from ILD Confluence
- Access ILD Work Breakdown Structure Tree
- Just view and/or download all public ILD documents in WBS
- Some documents are restricted, need EDMS account to access those
- This can be made available for other groups as well -SiD, Machine?

- ILD Technical Design Documentation 🛛 🗱 🗹
 - 🕇 A-HCAL 🕰 🗹
 - 🕇 Coil 端 🗹
 - 🛨 Configuration Management 🛛 🕰 🗹
 - 🛨 Design Integration 🛭 🕰 🗹
 - Detector Assembly and Operation Planning 4 C
 - 🛨 Intermediate Tracking 🛭 🕰 🗹
 - 🛨 Machine Elements 🛭 🥨 🗹
 - + Physics Simulation 端 🗹
 - 🕈 Project Management 🛭 📽 🗹
 - + Sc-ECAL 🤹 🗹
 - 🕇 SD-HCAL 🥨 🗹
 - + Si-ECAL 🧠 🗹
 - 🛨 Site and Buildings 🛭 🕰 🗹
 - Specifications and Parameters 🛛 🗱 📝
 - 🛨 Structural Engineering 🛛 🗱 🖸
 - Technical Documentation 🛛 🗱 🗹
 - 🕇 TPC 端 🗹
 - Vertex Detector 🛛 🕰 🗹 +
 - + Very Forward Systems 🛛 🤹 🗹
 - Yoke+Muon 📫 🗹 +

Example

ILD Technical Design Documentation 🛛 🗱 🗹
🛨 A-HCAL 📫 🖸
+ Coil 端 🗹
+ Configuration Management ı 🖓
 Design Integration 🤹 🗹
Definition of the ILD reference detector 🛛 💿 📝
ILD0dimensions-weigth130209 🛛 🖓 🔀
ILD Conventions and Rules 🛛 💿 🗹
Integration of inner detector region 🛛 💿 🔀
Note on the integration of the ILD detector
ILD Model 🧠 🖸
🛨 Interface Control Documents 🛭 📽 🖸

Example

Example

		- 1 -		•		
	international linear collider	ILD conventio Docur	ILD conventions and rules Document		Ref.: ????? Ed.: 0 Rev.: 3 Date: 24/04/16 Page: 1/11	
		ILD convent	tions and i	rules		
±			ILD			
*	Prepared by	Signature	Accepted by		Signature	
	Roman Pöschl	, Karsten Büßer, Toshiaki Tauchi	Claude Val	lée		
	Approved by	Functio	n	Date	Signature	
	Ties Behnke					
	Summary					
	Summary Annexes					
	Summary Annexes	Docum	nent Change Reco	ord		
	Summary Annexes Edition Re	Docun vision Date	nent Change Reco Modified pages	ord	bservations	

Impact of Earthquakes

Seismic Simulations

- Plan: Create repository with real earthquake spectra for common use (T. Tauchi)

Karsten Buesser - Mini-Workshop on ILC Infrastructure for Physics and Detectors - 23.02.2018

• Two subdetector groups are now looking into impact of seismic events on ILD (see talk be Felix)

Henri Videau LLR. February 2018 Orsay

• Data from Japanese seismic networks available (NIED), analytic description by international standards

Summary

Summary

- Work on an updated technical/engineering model of ILD has been re-started
- Interface Control Documents of the sub-detectors are coming together
 - important input for engineering model w.r.t mechanics, cables, etc.
- ILD Conventions and Rules are being worked out
- This will bring updated information about the requirements on the IR and general infrastructure
- Plan to create a common repository with earthquake data for seismic studies
- Keep an eye on ILD integration with the machine and the local infrastructure
- ILD Technical Design Documentation is online:
 - <u>edmsdirect.desy.de</u> -> ILD TDR
 - it will evolve
 - check it out!

Welcome to the ILD meeting 2018 in Ichinoseki, IWATE

20-22 February 2018 Ichinoseki, Japan/Ichinoseki Cultural Center Sponsored by the Iwate Prefecture ILC Promotion Council 岩手県国際リニアコライダー推進協議会

してを東北に

Outlook

ILD - Moving full steam ahead!