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Introduction• Jet clustering is one of the main key to obtain better physics 
results

• Physics results are strongly limited by mis-clustering

• To obtain correct jets leads to improve the mass resolution of the 
resonances

• Present jet clustering is far from good tool for reconstructing 
jets

• e.g. Higgs self-coupling: ～40% improvement if perfect!

• Staging: even at 250GeV, clustering is very important

• Separation of ZH/ZZ/WW in hadronic events
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Introduction

• Using simulation samples, we can know the origin of each particle

• This leads to the capability of  “supervised” learning to cluster 
particles

• “supervised” learning: TMVA is famous for a multivariate analysis 
tool

• But, it is basically a binary classifier

• There is no flexibility to construct any type of network architecture

• Need some (tricky) idea to apply it…

• Create network architecture by myself

• At least matrix calculation is necessary – enough within ROOT

• Option: introduce external library: Tensorflow, Caffe, Chainer, etc.

• In this case, I don’t know the matching with ilcsoft
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Extension of Durham distance measure
• Start from Durham jet clustering

• Durham distance measure: 𝑑𝑖𝑗
2 =

2min(𝐸𝑖
2,𝐸𝑗

2)(1−cos θ𝑖𝑗)

𝐸𝑣𝑖𝑠
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• Angular part is re-written as:

2(1 − 𝑐𝑜𝑠𝜃𝑖𝑗) =
𝑝𝑖

𝑝𝑖
−

𝑝𝑗

𝑝𝑗
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= 𝑑𝑖 − 𝑑𝑗
𝑇
𝐼(𝑑𝑖 − 𝑑𝑗)

𝑑𝑖 , 𝑑𝑗: 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 3 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑎 𝑜𝑓 𝑖, 𝑗 𝑡𝑟𝑎𝑐𝑘(𝑚𝑖𝑛𝑖𝑗𝑒𝑡)

• 𝐼 =
1 0 0
0 1 0
0 0 1

Unit matrix…

• Relax this constraint: 𝐼 → 𝑀 M: metric matrix

• How can we define M?
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Metric Learning – basic idea
• We can define M as we like (within the constraint in distance space)

• Mathematically, M should be Positive Semi-Definite

• So, we can set M as:

• To make same class minijets closer

• To make different class minijets further

• This calls Distance Metric Learning 5



Non-linear metric learning
• Previous pages are within linear metric learning

• Just distort space to only Ellipsoid shape(compress, expand, and rotate)

• Jet clustering case, needs highly non-linear metric learning

• To meet this non-linear feature, use Neural Network

• Studies in Machine learning field suggest Deep Neural Network has better 
ability for metric learning
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One example of the effect of metric learning
• Durham Distance embedding: 2D projection for visualization

• Preserve the distance relationship between each 2 minijet combination

• Nearer 2 minijets located nearer, and further 2 minijets located further

• 6D embedding for neural network input performed
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Convolutional Neural Network
• cnn is used for image processing

• cnn can recognize which object is there in an image

• Example:

• Use cnn to extract event information

• Using energy map of each event as a image, try to extract event feature

• Detail: see my talk at AWLC2017(I don’t want to go into detail!)

8



notation

• Create “answer” jets: perfect Durham jet clustering

• Numbering jets

• Simply, energy ordering of the jets

• So far, there seems no dependence of the jet direction!

• Thanks to CNN (c.f. CNN can absorb position shift effect)
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Preliminary structure of the jet clustering 
neural network

• Structure of Jet clustering neural network

• CNN + Deep Neural network

• CNN + feedforward neural network with 3(+1) hidden layers!

• Better efficiency with more hidden layers up to 3(+1)

• NN doesn’t work for more than 3 hidden layers so far…

• CNN will provide information of each event

• There is no reason for the determination of num. of nodes on each 
layer
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Network training

• Start from 30 minijets in an event

• To save CPU time for training

• Durham jet clustering is used to reduce num. of minijets to 30

• ZHH→(qq)(bb)(bb) events: 6 jet assignment 

• ～2000 events are used for training

• Num. of epoch is O(1000)

• Check minijet assignment efficiency between Durham and DNN

• Now, no vertex information is used(no LCFIPlus)
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• Assume color information is known

• Note: training sample

• Mass resolution improved!

• Higgs & Z mass are improved 

• Minijet assignment efficiency: 95-97% 

⇒ need >97% efficiency to go more

Mass distribution
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Over-fitting check
• Using ～1500 ZHH→(qq)(bb)(bb) events

• Check assignment efficiency using test events

• Energy fraction of main color singlet state

• Mean over ～1500 events

• Still almost Durham level…
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Prospects

• Over-fitting problem

• Better than the result of ALCW2017, STILL Durham level for test sample…

• Very difficult to meet both condition:

• Keep training efficiency

• Avoid over-fitting

• For very high efficiency(>97%), needs:

• Better input variables

• Better objective function(loss function)

• The idea to absorb the difference between events 
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Plan• One of the problem is how we can absorb the difference between 
events

• For very high efficiency, from NN view, all the events look 
“exception”…→infinite number of nodes & infinite number of events is 
necessary?

• CNN can relatively absorb position shift & distortion of shape

• So, CNN meets this?

• One idea: “Automatic Colorization” using CNN

• Gray scale →Color 

• Now, trying to do that
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Example 
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backups

17



Convolutional Neural Network
• cnn is used for image processing

• cnn has very excellent efficiency for classifying images

• cnn can recognize which object is there in an image

• Example:

• cnn has two parts(do not go into the detail!)

• Convolutional layers: for 2D image convolution

• Fully connected layer: Change 2D image → 1D feature vector

• Almost same as usual neural network(TMVA, etc.)
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Convolutional Neural Network?

• First, we would like to get features of jets

• Even by eye, we can see some clusters to some degree

• Can we obtain some hint from those images?

• Shape? Color flow? Substructure?
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How to apply cnn?
• cnn is used for image processing

• cnn has very excellent efficiency for classifying images

• cnn can recognize which object is there in an image

• Example:

• So, follow this way: How many jets are there in an event?

• Jets = Objects

• If cnn can determine how many jets in an event correctly, cnn will be able 
to recognize jet shapes in an event 
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notation

• Create “answer” jets: perfect Durham jet clustering

• Numbering jets

• Simply, energy ordering of the jets

• So far, there seems no dependence of the jet direction!

• Thanks to CNN (c.f. CNN can absorb position shift effect)
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CNN training

• ZHH→(qq)(bb)(bb): 6 jets in an image

• Intentionally omit some jets from an image

• Omitting is totally random, so there are 31 pseudo-images created from 
an event

• Example:

• Network is trained to determine number of jets in an image
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Preliminary results

Input/output 1 jet 2 jets 3 jets 4 jets 5 jets 6 jets

1 jet 93.9
93.4

6.10
6.60

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

2 jets 8.80
8.40

79.3
80.1

11.8
11.3

0.10
0.20

0.00
0.00

0.00
0.00

3 jets 0.20
0.30

18.2
16.4

59.6
57.8

21.6
24.9

0.30
0.60

0.10
0.00

4 jets 0.00
0.00

0.70
0.40

16.6
16.3

62.0
61.8

18.5
19.7

2.20
1.80

5 jets 0.00
0.00

0.00
0.00

0.80
0.80

20.4
21.6

47.8
48.6

31.0
29.0

6 jets 0.00
0.00

0.00
0.00

0.00
0.00

1.40
0.80

13.7
14.6

84.9
84.6
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• Tagging efficiency using 1000 events

• Looks no over-fitting
• Better diagonal elements will be of course better
• Need to suppress 5jets→6jets mis-ID

Note: This result is not directly going to Jet Clustering!!

Training data
Testing data



Transfer learning
• Convolutional layer will learn some features about jets

use this directly   
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Network Architecture of CNN

• Structure of CNN

• Simple structure of feedforward neural network with 1 hidden 
layer

• There is no reason for the determination of num. of nodes on 
each layer
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Effect of minijets

20jets 30jets 40jets 50jets 60jets

Mis-clustered 
minijet
rate(%)

15.2 16.3 17.2 18.0 18.5
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keywords
• Memo of keywords for DeepLearning

• I feel very important:

• Batch Normalization

• For avoiding over-fitting:

• L2 Normalization

• Dropout

• For CNN:

• Rectifier Linear Unit(ReLU)

• Other:

• Softmax
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