E

马アススコヨOリスを 2017

Study of sensitivity to anomalous VVH couplings at the International Linear Collider

Introduction on VVH couplings

The SM has been successful to describe nature. Several phenomena can't be explained only with the SM. (Dark matter, baryon asymmetry, ...)

Precise verification of a structure of the Higgs sector is the next step.

The Higgs is a tool for verification.

The structures and couplings between

the Higgs and vectors VVH ($\mathrm{V}=\mathrm{Z}, \gamma$ and W)
directly relate to Electro-Weak Symmetry Breaking.

One approach is the Effective Field Theory (EFT)

$$
\begin{aligned}
\mathcal{L}_{Z Z H}= & M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H \\
\mathcal{L}_{W W H}= & 2 M_{W}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{W}}{\Lambda}\right) W_{\mu}^{+} W^{-\mu} H+\frac{b_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} H+\frac{\tilde{b}_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \widetilde{\hat{W}}^{-\mu \nu} H \\
& \hat{V}_{\mu \nu} \equiv \partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu} \text { and } \tilde{\hat{V}}_{\mu \nu} \equiv \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \hat{V}^{\rho \sigma} .
\end{aligned}
$$

Anomalous ZZH couplings

$\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H$

- " a_{z} ": a normalization parameter (rescales the SM-coupling)
- " b_{z} " : a different CP-even tensor structure affecting momentum and changes angular distribution.
- "烈" : a CP-violating parameter affecting angular/spin correlations.

Anomalous ZZH couplings

EPS17 talk
https://indico.cern.ch/event/466934/contributions/2588482/

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \tilde{\hat{Z}}^{\mu \nu} H
$$

Consideration on Anomalous WWH couplings

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \tilde{\tilde{Z}}^{\mu \nu} H
$$

anomalous WWH couplings using the Higgs decay

The origin of VVH is same, EWSB
e^{-}

$\left\{\begin{array}{l}\text { Production : incoming and outgoing } \\ \text { Decay : both is outgoing }\end{array}\right.$
The difference can be calculated in terms of $|M| \rightarrow$ back up

When the variation of $\boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{W})$ depending on anom-couplings the variation of $\Gamma(H \rightarrow X X)$ must be considered. $\rightarrow \quad$ Only shape information

Anomalous WWH couplings

$\mathcal{L}_{W W H}=2 M_{W}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{W}}{\Lambda}\right) W_{\mu}^{+} W^{-\mu} H+\frac{b_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} H+\frac{\tilde{b}_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \widetilde{\hat{W}}^{-\mu \nu} H$

- " a_{z} ": a normalization parameter (rescales the SM-coupling)
- " b_{z} " : a different CP-even tensor structure affecting momentum and changes angular distribution.
- " \tilde{b}_{z} " : a CP-violating parameter affecting angular/spin correlations.

 In the Figs rest frame

Anomalous WWH couplings

$\mathcal{L}_{W W H}=2 M_{W}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{W}}{\Lambda}\right) W_{\mu}^{+} W^{-\mu} H+\frac{b_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} H+\frac{\tilde{b}_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \widetilde{\hat{W}}^{-\mu \nu} H$

- " a_{z} ": a normalization parameter (rescales the SM-coupling)
- " b_{z} " : a different CP-even tensor structure affecting momentum and changes angular distribution.
- " \tilde{b}_{z} " : a CP-violating parameter affecting angular/spin correlations.

c-tag performance for $\mathbf{H} \rightarrow \mathbf{W}$ *

$$
\text { using } \mathrm{H} \rightarrow W W^{*} \rightarrow c x \bar{c} \bar{x}
$$

Events which can find two 2ndary vertices $\sim 5 \%$ of all events

$$
\mathrm{ZH} \rightarrow \mathrm{vv}+\mathrm{WW} \rightarrow \mathrm{cxcx} \quad \mathrm{w} / 250 \mathrm{fb}^{-1}
$$

Before c-tag distinction ~ 100 (cxcx) After c-tag distinction

$$
\text { c-tag requirement }>0.75
$$

$$
\rightarrow 12 \text { (cxcx) }
$$

selection efficiency 12%

Phys. Rev. D 88, 013010

- Published 18 July 2013

Measuring anomalous couplings in $\mathrm{H} \rightarrow \mathrm{WW} *$
c-tag
selection efficiency 88%

Decay processes for WWH

Focus on the Higgs-straulung @ 250GeV

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZH} \rightarrow(1) . v v+\mathrm{WW}(4 \mathrm{jets} \\
& \rightarrow \text { (categorize) } \\
& \mathrm{qqqq}
\end{aligned}
$$

(2). qq + WW (lvqq)
fully reconstruction is possible
(3). $q q+W W$ (4jets)
huge migration
sensitive info. is almost lost

1. Full standard model backgrounds are taken into account
2. Background suppression is optimized by considering signal-significance

Decay processes for WWH

Focus on the Higgs-straulung @ 250GeV
250GeV w/ 250fb-1

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZH} \rightarrow(1) . v \nu+\mathrm{WW} \quad \text { (4jets (categorize) } \\
& \rightarrow \text { cxcx } \quad \text { c-tag essential } \\
& \text { qqqq } \\
& \rightarrow \text { back up slides } \\
& \text { Nsig }=12.27 \quad \text { Nsig }=418.11 \\
& \mathrm{Nbkg}=45.53 \quad \mathrm{Nbkg}=1663.87 \\
& \text { Signif }=1.61 \quad \text { Signif }=9.16
\end{aligned}
$$

(2). qq + WW (lvqq)
fully reconstruction is possible
(3). $q q+W W$ (4jets)
huge migration
sensitive info. is almost lost

Nsig $=1037$
$\mathrm{Nbkg}=1402$
Signif= 20.99
Nsig $=906$
Nbkg $=13590$
Signif $=7.53$

1. Full standard model backgrounds are taken into account
2. Background suppression is optimized by considering signal-significance

Determination of the sensitivity

Our approach for evaluating the sensitivity to the anomalous couplings is based on a combined chi2.

- Shape information

"Generator level" distribution Calculated do/dX with explicit parameters.

- Normalization information

$\chi^{2}=\sum_{i=1}^{n}\left[\frac{N_{S M} \cdot \frac{1}{\sigma} \frac{d \sigma}{d x}\left(x_{i}\right) \cdot f_{i}-N_{S M} \cdot \frac{1}{\sigma} \frac{d \sigma}{d x}\left(x_{i} ; a_{Z}, b_{Z}, \tilde{b}_{Z}\right) \cdot f_{i}}{\Delta n_{S M}^{o b s}\left(x_{i}\right)}\right]^{2}$ \rightarrow Transfer to "Detector level" distribution

Poisson error on each bin
(SM Bkgs are taken into account)

Expected \#events with different models

Migration effect : example $\Delta \Phi$

Distributions are subject to migration effects due to

- finite detector resolution
- jet clustering,
- missing particles

Production plane angle $\Delta \Phi$ on $\mathbf{Z H} \rightarrow \mu^{+} \mu^{-} \mathbf{H} @ 250 \mathrm{GeV}$

- ...

Decay plane angle $\Delta \Phi$

$$
\text { on } \mathbf{Z H} \rightarrow \mathbf{q q W W} \rightarrow \mathbf{q q}+l v q q
$$

Migration effect : example $\Delta \Phi$

\rightarrow detector response \boldsymbol{f}

For a N-binned distribution, an NxN migration matrix is necessary to transfer the "generator" level to the "detector" level.

$$
N^{R e c}\left(x_{j}^{R e c}\right)=\sum_{i \text { detector response }} f\left(x_{j}^{R e c}, x_{i}^{G e n}\right) \cdot N^{G e n}\left(x_{i}^{G e n}\right)
$$

$$
N^{R e c}\left(x_{j}^{R e c}\right)=\sum_{i} f_{j i} \cdot N_{i}^{G e n}=\sum_{i} \overline{f_{j i}} \cdot \eta_{i} \cdot N_{i}^{G e n}
$$

$$
\begin{aligned}
& \text { Normalized } \\
& \text { to } 1
\end{aligned}\left\{\begin{aligned}
\eta_{i} \equiv \frac{N_{i}^{\text {Accept }}}{N_{i}^{\text {Gene }}} \\
\bar{f}_{j i} \equiv \frac{N_{j i}^{\text {Accept }}}{N_{i}^{\text {Accept }}}(\text { (Mvent Acceptance) } \\
\text { (Migration Matrix) }
\end{aligned}\right.
$$

Decay plane angle $\Delta \Phi$

Migration effect : example $\Delta \Phi$

\rightarrow detector response f

For a N-binned distribution, an NxN migration matrix is necessary to transfer the "generator" level to the "detector" level.

Example:
Situation of the migration e.g. Pw distribution

Power of the shape for determining anomalous WWH

Only shape information is considered.
@ $250 \mathbf{G e V} \mathbf{w} / 250 \mathrm{fb}-1$ is assumed.

$$
\Delta \chi^{2}=\chi^{2}\left(\chi_{2 \text { min }}=0\right)
$$

$v \nu+W W$
(4 jets \rightarrow qqqq $)$ categorized

3d shape information
$x(P w, \cos \theta w f, \Delta \Phi[0 \sim \pi])$
 $\nu v+W W$
(4jets \rightarrow cxcx) categorized

1d shape information
$x(\Delta \Phi[0 \sim \pi])$

3d shape information $x(P w, \cos \theta w f, \Delta \Phi[0 \sim 1 / 2 \pi])$

Power of the shape for determining anomalous WWH

Only shape information is considered.
(a) $250 \mathrm{GeV} \mathbf{w} / 250 \mathrm{fb}-1$ is assumed.

$$
\Delta \chi 2=\chi 2\left(\chi 2_{\min }=0\right)
$$

$v v+W W$
(4jets $\rightarrow q q q q$) categorized
$3 d$ shape information
$x(P w, \cos \theta w f, \Delta \Phi[0 \sim \pi])$

3d shape information
$x(P w, \cos \theta w f, \Delta \Phi[0 \sim \pi])$

Comparison of the sensitivity to anom-ZZH and -WWH

Only shape information is considered.
@ $250 \mathrm{GeV} \mathbf{w} / 250 \mathrm{fb}-\mathbf{1}$ is assumed.

$\mathbf{Z H} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \mathbf{H}$
@ 250 GeV w/ 250 fb-1

The other 2 params are fixed to 0.

$\mathbf{H} \rightarrow \mathbf{W W} @ 250 \mathrm{GeV}$ w/ 250 fb-1 $v v+W W$
(4jets \rightarrow cxcx) categorized
(4jets $\rightarrow q q q q$) categorized $q q+W W(l v q q)$

Comparison of the sensitivity to anom-ZZH and -WWH

Only shape information is considered.
@ $250 \mathrm{GeV} \mathbf{w} / 250 \mathrm{fb}-\mathbf{1}$ is assumed.
Another params is free. $\Delta \chi^{2}$ dist. is projected on to $a-b$

$\mathbf{Z H} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \mathbf{H}$
$@ 250 \mathrm{GeV}$ w/ $250 \mathrm{fb}-1$

$\mathbf{H} \rightarrow \mathbf{W W} @ 250 \mathrm{GeV} \mathbf{w} / 250 \mathrm{fb}-1$ $v \nu+W W$
(4jets \rightarrow cxcx) categorized
(4jets $\rightarrow q q q q$) categorized $q q+W W(l v q q)$

Summary

The Higgs boson is the tool to new physics.
The new physics might appear in the Lorentz structure of the VVH couplings.

The anomalous ZZH couplings has been studied and the sensitivity are given under the framework
 of the Effective Field Theory.

The study of the anomalous WWH couplings is ongoing, preliminary results indicate that sensitivity to b using shape information in $\mathrm{H} \rightarrow \mathrm{WW}$ channels would be very useful.

Evaluation of the combined sensitivity
for anomalous HZZ and HWW couplings are ongoing, the connection (ηz and $\eta w, \zeta z$ and ζw) under discussion.

$\mathbf{Z H} \rightarrow \mathrm{vvH}(\mathrm{H} \rightarrow \mathbf{W W} \rightarrow \mathbf{q q q q}) @ 250 \mathrm{GeV}$ with $\mathbf{2 5 0} \mathbf{0}^{\mathrm{fb}-1}$

Cross section of the $\mathrm{ZH} \rightarrow \mathrm{vvH}(\mathrm{H} \rightarrow \mathrm{WW})$
~ 16.7
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{qqqq} \sim 7.6 \quad$ *L ~ 1916 events

($\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{cxcx} \sim 1.9$ *L ~ 479 events)

Using several observable except angular observable Bkgs are suppressed. (scanned to get $\mathrm{S}_{\text {sig }}$)

selection ~ 20\%

Before c-tag distinction ~ 430

Categorization

After c-tag distinction

$$
\begin{aligned}
& H \rightarrow W W \rightarrow \text { qqqq } \quad{ }^{*} L^{*} \varepsilon \sim 420 \\
& H \rightarrow W W \rightarrow C x L^{*} \varepsilon \sim 12
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Nsig }=12.27 & \text { Nsig }=418.11 \\
\text { Nbkg }=45.53 & \text { Nbkg }=1663.87 \\
\text { Signif= 1.61 } & \text { Signif=9.16 }
\end{array}
$$

$\mathbf{Z H} \rightarrow \mathrm{vvH}(\mathrm{H} \rightarrow \mathbf{W W} \rightarrow \mathbf{q q q q}) @ 250 \mathrm{GeV}$ with $\mathbf{2 5 0}{ }^{\mathrm{fb}-1}$

A crucial thing is c-tag:
Check the performance after extracting only WW $\rightarrow \mathbf{c x c x}$ decay events

\#2ndary VTX
from C of W
in the case \#2ndary VTX==1

\#2ndary VTX
from C of \mathbf{W}^{*}
in the case \#2ndary VTX==1

Decision of c-tag requirement

$$
\begin{aligned}
\text { Efficiency } & =\frac{N^{a c p t} \cap M C_{c \bar{x} x \bar{c}}}{M C_{c \bar{x} x \bar{c}}} \\
\text { Purity } & =\frac{N^{a c p t} \cap M C_{c \bar{x} x \bar{c}}}{N^{a c p t}}
\end{aligned}
$$

$\mathbf{Z H} \rightarrow \mathrm{vvH}(\mathrm{H} \rightarrow \mathbf{W W} \rightarrow \mathbf{q q q q}) @ 250 \mathrm{GeV}$ with $250^{\mathrm{fb}-1}$

(4jets \rightarrow cxcx) categorized

Cut Table
cut\&process
raw data
used data
passed data
passed/used
xsection
xsection*L
sucsess:
+nisoleptons
+allpfos
+j2btagsum
+visenergy
+orwmass
+missmass
+minpfoinjets
+logy23
+logy34
+printhrust
+ctagdummy
+hmass
Nsig = 12.27
Nbkg = 45.53
Signif= 1.61

Surmary			
vvh_cc	wh_!cc	vvh $!4 q$	vVH!uw
30000	90818	138360	151710
30002	90818	138360	151710
769	45	1	24
2.563	0.050	0.001	0.016
1.91	5.75	9.09	60.79
479	1437	2271	15196
479	1437	1975	14831
478	1435	746	14670
451	1334	179	11101
419	1310	173	2402
345	1071	18	1854
215	698	8	1238
189	614	6	1045
165	528	2	905
144	464	2	396
111	366	1	182
100	331	1	152
12	1	0	2
12	1	0	2

ZZ l	$W W, l$	ZZW l	sW l	sZee_l
69994	409167	430167	865553	$10357 \overline{1} 8$
69994	409167	430167	865553	1035718
0	0	0	0	0
0.000	0.000	0.000	0.000	0.000
95.89	915.58	958.97	1966.97	1053.45
23972	228894	239742	491743	263361
12877	99095	102531	142360	156545
6529	5851	79662	13503	28566
8	5	59	4	16
4	4	36	3	15
0	0	8	1	0
0	0	5	0	0
0	0	3	0	0
0	0	1	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

l	sZvv_l	sZsW l	ZZ sl	WW sl	SW sl	sZee_sl	Zvvsl
18	79997	254981	528110	1949032	1987519	319496	142858
0	79997	254981	528110	1949032	1987519	319496	142858
0	0	0	2	18	0	0	3
0	0.000	0.000	0.000	0.001	0.000	0.000	0.002
	114.14	550.67	856.93	10992.92	5898.17	378.28	271.81
1	28534	137667	214232	2748229	1475452	94570	67951
5	9743	20912	214172	2748228	1474541	94523	67928
6	8132	698	156216	1300981	110697	7124	67830
6	11	1	81679	63950	52373	1411	29811
0	9	1	57287	596762	50561	1082	20911
0	1	0	1787	135162	6368	9	8135
0	0	0	5148	29588	752	4	2473
0	0	0	2756	10825	228	3	1561
0	0	0	1323	3517	79	0	752
0	0	0	307	2421	50	0	169
0	0	0	93	1094	22	0	47
0	0	0	67	818	20	0	37
0	0	0	1	25	0	0	1
0	0	0	1	25	0	0	1

\qquad 29632 Z ee(A)
1995739 0.0 0.0
841.
2103

$$
\begin{array}{rrrrrr}
500903 & 1100844 & 1128 / 5 & 3 / 12010 & 2903 L 25 & 1995 / 39 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
841.38 & 8706.23 & 7252.10 & 12993.87 & 78046.47 & 25183.36 \\
110344 & 1176557 & 1813075 & 3748467 & 19511617 & 6795840
\end{array}
$$

$$
\begin{array}{lllrll}
841.38 & 8706.23 & 7252.10 & 12993.87 & 78046.47 & 25183.36 \\
210344 & 2176557 & 1813025 & 3248467 & 19511617 & 6295840
\end{array}
$$

$$
\begin{array}{rlrlrr}
210344 & 21 / 655 / & 1813025 & 324846 / 1951161 / & 6295840 \\
210344 & 2176557 & 1813025 & 1531414 & 19511038 & 2788141 \\
209881 & 2172234 & 1809374 & 1131566 & 19345317 & 404624
\end{array}
$$

$$
\begin{array}{r}
20 y 88 \\
15165 \\
9733
\end{array}
$$

330
85
46
16
14
10
6
4
0
0

965	10940
642	824701
63	2071
31	267
18	17
10	9
5	2
2	
0	
0	
0	

(4jets \rightarrow qqqq) categorized

_- Cut Table Surmary cut\&process raw data passed data passed/used xsection
xsection*L
sucsess:
sucsess:
+nisoleptons
+allpfos
+j2btagsum
+visenergy
+onwmass
+missmass
+minpfoinjets
+logy23
+logy33
+logy34
+printhrus
+hmass
Nsig $=418.11$
Nbkg $=1663.8$
Signif= 9.16
$\begin{array}{rrrr}\text { vurmary } & & & \\ 30 \overline{0} 02 & \text { wh_!cc } & \text { vwh_! } 4 \mathrm{q} & \text { vwH_!ww } \\ 30002 & 138360 & 151710\end{array}$ 30002 18.349 1.91
479
479
478

478
45

 분 	

0
0.000
95.89
12872
6529
0
4
0
0
0
0
0
0
0
0
0

ZZWW_l

sW 1
865553 $\begin{array}{rr}\text { sZee_l } \\ 1035718 \\ 1035718 \\ 0 & 0 \\ 0 & 0.000 \\ 1053.45 \\ 3 & 263361 \\ 0 & 156545 \\ 3 & 28566 \\ 4 & 16 \\ 3 & 15 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ $\begin{array}{rrr}0 & 0 \\ 0.000 & 0.000 & \\ 1966.97 & 1053.45 & 114 \\ 491743 & 263361 & 28 \\ 142360 & 156545 & \end{array}$
sZVv_l

\[
$$
\begin{array}{r}
79997 \\
0 \\
0.000
\end{array}
$$

\] | | SZs |
| :--- | :--- |
| | 254 |
| | 25 |
| | 0 |
| | 550 |
| | 1 |
| 1 | |
| 1 | |
| 1 | |
| 0 | |
| 0 | |
| 0 | |
| 0 | |
| 0 | |
| 0 | |
| 0 | |
| 0 | |

$$
\begin{array}{r}
799 \\
0 . \\
114 \\
28 \\
9 \\
8
\end{array}
$$

$$
\begin{array}{r}
0.000 \\
114.14 \\
28534
\end{array}
$$

114.14
28534
9743
8132

$N l$	ZZ_sl	WW_sl	sW_sl	sZee_sl	Zvv_sl	Zl
81	528110	1949032	1987519	319496	142858	5009
981	528110	1949032	1987519	319496	142858	500
0	162	562	27	1	74	
000	0.031	0.029	0.001	0.000	0.052	0.
67	856.93	10992.92	5898.17	378.28	271.81	841
667	214232	2748229	1474542	94570	67951	210
12	214172	2748228	1474541	94523	67928	2103
698	156216	1300981	110697	7124	67830	2098
1	81679	637950	52373	1411	29811	151
1	57287	596762	50561	1082	20911	9233
0	17787	135162	6368	9	8135	
0	5148	29588	752	4	2473	
0	2756	10825	228	3	1561	
0	1323	3517	79	0	752	
0	307	2421	50	0	169	
0	93	1094	22	0	47	
0	67	818	20	0	37	
0	66	792	20	0	35	
0	66	792	20	0	35	

ZZ_sl	WW_sl	sW_sl	sZee_sl	Zvv_sl	ZZ
528110	1949032	1987519	319496	142858	50096
528110	1949032	1987519	319496	142858	50096
162	562	27	1	74	
0.031	0.029	0.001	0.000	0.052	0.002
856.93	10992.92	5898.17	378.28	271.81	841.38
214232	2748229	1474542	94570	67951	2103
214172	2748228	1474541	94523	67928	2103
156216	1300981	110697	7124	67830	209881
81679	637950	52373	1411	29811	151652
57287	596762	50561	1082	20911	9233
17787	135162	6368	9	8135	8
5148	29588	752	4	2473	
2756	10825	228	3	1561	
1323	3517	79	0	752	
307	2421	50	0	169	
93	1094	22	0	47	
67	818	20	0	37	
66	792	20	0	35	
66	792	20	0	35	

ZZ sl	WW_sl	sW_sl	sZee_sl	Zv_sl	ZZ_h
528110	1949032	1987519	319496	142858	500963
528110	1949032	1987519	319496	142858	500963
162	562	27	1	74	10
0.031	0.029	0.001	0.000	0.052	0.002
856.93	10992.92	5898.17	378.28	271.81	841.38
214232	2748229	1474542	94570	67951	210344
214172	2748228	1474541	94523	67928	210344
156216	1300981	110697	7124	67830	209881
81679	637950	52373	1411	29811	151652
57287	596762	50561	1082	20911	92330
17787	135162	6368	9	8135	85
5148	29588	752	4	2473	46
2756	10825	228	3	1561	16
1323	3517	79	0	752	14
307	2421	50	0	169	10
93	1094	22	0	47	6
67	818	20	0	37	4
66	792	20	0	35	4
66	792	20	0	35	4

1428
1428

0.0
271.
679
679
6783
29811
209
81
24
15
7
1

ZZ_sl	WW_sl	sW_sl	sZee_sl	Zvv_sl	ZZ
528110	1949032	1987519	319496	142858	5009
528110	1949032	1987519	319496	142858	5009
162	562	27	1	74	
0.031	0.029	0.001	0.000	0.052	0.0
856.93	10992.92	5898.17	378.28	271.81	841
214232	2748229	1474542	94570	67951	2103
214172	2748228	1474541	94523	67928	2103
156216	1300981	110697	7124	67830	2098
81679	637950	52373	1411	29811	151631
57287	596762	50561	1082	20911	9233
17787	135162	6368	9	8135	
5148	29588	752	4	2473	
2756	10825	228	3	1561	
1323	3517	79	0	752	
307	2421	50	0	169	
93	1094	22	0	47	
67	818	20	0	37	
66	792	20	0	35	
66	792	20	0	35	

1 uh $\begin{array}{rrr}90818 & 138360 & 151710 \\ 90818 & 138360 & 151710 \\ 20876 & 58 & 1498 \\ 2.987 & 0.042 & 0.987 \\ 5.75 & 9.09 & 60.79 \\ 1437 & 2271 & 15196 \\ 1437 & 1975 & 14831 \\ 1435 & 746 & 14670 \\ 1334 & 179 & 11101 \\ 1310 & 173 & 2402 \\ 1071 & 18 & 1854 \\ 698 & 8 & 1238 \\ 614 & 6 & 1045 \\ 528 & 2 & 905 \\ 464 & 2 & 396 \\ 366 & 1 & 182 \\ 331 & 1 & 152 \\ 330 & 1 & 150 \\ 330 & 1 & 150\end{array}$
\qquad

ZZWWh
6963
10
.002
1.38
0344
0344
9881
652
330
85
46
16
14
10
6
4
4
4

$\begin{array}{rr}752 & 377 \\ 752 & 377 \\ 6 & \end{array}$
2. $\begin{array}{rr} & \text { Z } \\ 29632 \\ 0 & 29632 \\ 0 & 0.0\end{array}$ Z_ee(A) 1995739 0.000 2176557
2176557 16959 $\begin{array}{rr}85 & 169 \\ 46 & \\ 16 \\ 14 \\ 10 \\ 6 \\ 4 \\ 4 \\ 4 & \end{array}$ 95989
41
24
10
6
6
6
6
6
.000 7252
1813

$$
\begin{array}{r}
0.000 \\
00287
\end{array}
$$

$$
\begin{array}{r}
0.003 \\
78046.47
\end{array}
$$

$$
\begin{array}{r}
0.00 \\
7 \\
725183.3
\end{array}
$$

$$
\begin{array}{ll}
32.164 \\
313025 & 32 \\
313025 & 15
\end{array}
$$

90
50
29

359
90
50
29
24
21
18
11
10
10

$$
\begin{array}{ll}
0 & 1531 \\
5 & 1131
\end{array}
$$

31414
31566
965
642
63
31
18
10
5
2
0
0

Difference of the signature b/w Higgs production \& decay

$$
\begin{aligned}
& z^{\mu}=\epsilon^{\mu} \\
& \text { Boson were fanction } \\
& \text { podan 2ation four-hector } \varepsilon^{\mu} \\
& z^{\mu \nu}=\partial^{\mu} \varepsilon^{\nu}-\partial^{\nu} \varepsilon^{\mu} \\
& =\left[\partial^{\mu}=-i\left(j \partial^{\mu}\right)\right]=-i\left(q^{\mu} \varepsilon^{\nu}-q^{\nu} \varepsilon^{\mu}\right) \\
& M_{a}\left\{\begin{aligned}
\mu_{1 \mu} z_{2}^{\mu} & =\varepsilon_{1}{ }_{\mu}^{\mu} \varepsilon_{2}^{\mu} \\
z_{1 \mu} z_{2}^{\mu \nu} & \left.=L_{i}\right)^{2}\left[(q _ { 1 , \mu } \varepsilon _ { 1 v } - q _ { 2 0 } \varepsilon _ { 1 \mu }) \left(q_{2}^{\mu} \varepsilon_{2}^{u}-q_{2}{ }^{\nu} \varepsilon_{2}\right.\right. \\
& =-2\left[\left(q_{1} q_{2}\right)\left(\varepsilon_{1} \varepsilon_{2}\right)-\left(q_{1} \varepsilon_{2}\right)\left(q_{2} \varepsilon_{1}\right)\right]
\end{aligned}\right.
\end{aligned}
$$

$$
q_{1}=(-\sqrt{5}, 0)
$$

$$
q_{1} \varepsilon_{1}=0
$$

$$
-\sqrt{5} \varepsilon_{i}^{i}=0
$$

$$
\varepsilon_{i}^{0}=0 .
$$

$$
\begin{aligned}
& \varepsilon_{1}=\left(0, \varepsilon_{1}\right) \\
& q_{2}=\left(E_{2}, q_{2}\right) \rightarrow\left[\text { out rinf }-q_{2}\right] \\
& \varepsilon_{2}=\left(\varepsilon_{2}^{0}, \varepsilon_{2}\right)
\end{aligned}
$$

$$
\varepsilon_{2}=\left(\varepsilon_{2}^{0}, \varepsilon_{2}\right)
$$

tlansuare (z direction)

$$
\left.\begin{array}{rl}
\varepsilon_{2}=\left(0, \varepsilon_{2}\right) \\
\mu_{a} & =-\varepsilon_{i} \varepsilon_{2} \\
\mu_{b} & =-2\left[-E_{2} \sqrt{s}\left(-\varepsilon_{1} \cdot \varepsilon_{2}\right)\right] \\
& =-2\left[E_{2} \sqrt{s} \varepsilon_{i} \varepsilon_{2}\right]
\end{array}\right\} \text { same sighu }
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
q_{1}^{2}=m_{w}^{2} \quad \text { loreds } 2 \text { tams. } \\
q_{1}=\left(E_{1}, I\right) \quad \\
\varepsilon_{1} 0 Q=0 . \\
q_{2}=\left(m_{n}-E_{1},-\Phi\right) \\
\varepsilon_{1}=\left(0, \varepsilon_{1}\right) \\
\varepsilon_{2}
\end{array}\right)
\end{aligned}
$$

$$
\text { opp } \begin{aligned}
m a & =-q_{1} \cdot \varepsilon_{2} \\
m b & \left.=-2\left[\begin{array}{l}
{\left[\frac{1}{2} m_{n}^{2} \quad q_{1} q_{2}=\frac{1}{2}\left(q_{1}+q_{2} 1^{2}-q_{1}^{2}-q_{2}^{2}\right.\right.} \\
-m_{n}^{2}-q_{2}^{2}
\end{array}\right]\left(-q_{1} \cdot q_{2}\right)\right] \\
& =\left(m_{n}^{2}-2 m_{n}^{2}-2 q_{2}^{2}\right)\left(q_{1}-q_{2}\right)
\end{aligned}
$$

Verification of the Lorentz structures

Verification of the Lorentz structures ${ }_{n \text { the }}$ Higgs rest frame

$@ 250 \mathrm{GeV} e^{+} e^{-} \rightarrow \mathbf{Z H} \rightarrow \mathrm{ff}+\boldsymbol{W} \boldsymbol{W}$
$\boldsymbol{W W} \rightarrow \boldsymbol{j} \boldsymbol{e t s}$
$\mathcal{L}_{W W H}=2 M_{W}^{2}\left(\frac{1}{\mathrm{~V}}+\frac{a_{W}}{\Lambda}\right) W_{\mu}^{+} W^{-\mu} H+\frac{b_{W}}{\Lambda}$

Verification of the Lorentz structures

$@ 500 \mathrm{GeV} \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow$ WW-fusion $\rightarrow \boldsymbol{v} \boldsymbol{v}+\boldsymbol{H}(\rightarrow \boldsymbol{W} \boldsymbol{W})$
 $\boldsymbol{v} \boldsymbol{+}+\boldsymbol{H}(\rightarrow \boldsymbol{b})$

Verification of the Lorentz structures

- "a ${ }_{\mathrm{z}}$ ": a normalization parameter affecting the overall cross section. (rescales the SM-coupling)
- " b_{z} " : a different CP-even tensor structure affecting momentum and changes angular distribution.
- " \tilde{b}_{z} " : a CP-violating parameter affecting angular/spin correlations.

$$
\boldsymbol{e}^{+} e^{-} \rightarrow Z H \rightarrow l^{+} l^{-} H
$$

$\cos \theta \mathrm{z}$: a production angle of the Z . $\cos \theta f^{*}$: a helicity angle of a Z's daughter.
$\Delta \Phi:$ an angle between two production plane.

$$
\begin{aligned}
\mathcal{L}_{Z Z H}= & M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H \\
& +\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H
\end{aligned}
$$

Verification of the Lorentz structures

Verification of the Lorentz structures

Sensitivity to ZZH couplings 250 GeV vs 500 GeV

Simultaneous fitting is performed

 in three-parameter space.

The shape distributions quickly change at 500 GeV the correlation between " a_{z} " and " b_{z} " can be disentangled.

Sensitivity to ZZH couplings $250 \mathrm{GeV}+500 \mathrm{GeV}$

A realistic ILC full operation is assumed
 T. Barklow and J. Brau et al., "ILC Operating Scenarios", arXiv:1506.07830 [hep-ex]

H20 scenario :

Total luminosities of $2000 \mathrm{f} \mathrm{b}^{-1}$ and $4000 \mathrm{f} \mathrm{b}^{-1}$ are planned to be accumulated at $\sqrt{ } \mathrm{s}=250$ and 500 GeV , respectively.

New physics scale Λ is assumed to be 1 TeV .

A table showing sensitivity to $\mathbf{Z Z H}$ at $250+500 \mathrm{GeV}$.

For the parameter "a" (SM-like couplings) precision is $\mathbf{a}_{\mathbf{z}}$ few \%.

For new tensor structures precision of less than 1% or better is possible to achieve.

Precision on $\widetilde{\mathrm{b}_{z}}$ is decided by angular info.

Sensitivities to the a, b and bt with only the Higgsstrahlung

Nominal energies and luminosities

$$
\sqrt{\mathrm{S}}=250 \mathrm{GeV} \text { and } \int \mathrm{Ldt}=250 \mathrm{fb}^{-1}
$$

TABLE V. The sensitivity to the anomalous $Z Z H$ coupling: at $\sqrt{s}=250 \mathrm{GeV}$ assuming the benchmark integrated lumi nosity of $250 \mathrm{fb}^{-1}$ with both beam polarizations. The values correspond to one sigma bounds. The words, with shape anc $+\sigma$, in the table indicate that the only shape information is used for the evaluation, and the shape information togethes with the cross section information are used.

		a_{Z}	b_{Z}	\tilde{b}_{Z}
$Z H$	$e_{L}^{-} e_{R}^{+}$	-	± 0.110	± 0.051
with shape	$e_{R}^{-} e_{L}^{+}$	-	± 0.129	± 0.061
$Z H$	$e_{L}^{-} e_{R}^{+}$	± 0.309	± 0.109	± 0.051
with shape $+\sigma$	$e_{R}^{-} e_{L}^{+}$	± 0.356	± 0.125	± 0.061

correlation matrix ($\mathrm{W} /$ shape $+\sigma \mathrm{P}(\mathrm{LR})$)

$$
\rho=\left(\begin{array}{ccc}
1 & -0.9917 & 0.0064 \\
& 1 & -0.0051 \\
& & 1
\end{array}\right)
$$

$V_{\mathrm{s}}=500 \mathrm{GeV}$ and $\int \mathrm{Ldt}=500 \mathrm{fb}^{-1}$

TABLE VI. The sensitivity to the anomalous $Z Z H$ couplings at $\sqrt{s}=500 \mathrm{GeV}$ assuming the benchmark integrated luminosity of $500 \mathrm{fb}^{-1}$ with both beam polarizations. The values correspond to one sigma bounds. The words in the table, with shape and $+\sigma$, indicate that the only shape information is used, and the shape information together with the cross section information are used for the evaluation of the sensitivity.

		a_{Z}	b_{Z}	\tilde{b}_{Z}
$Z H$	$e_{L}^{-} e_{R}^{+}$	-	± 0.0199	± 0.0183
with shape	$e_{R}^{-} e_{L}^{+}$	-	± 0.0215	± 0.0198
$Z H$	$e_{L}^{-} e_{R}^{+}$	± 0.116	± 0.0201	± 0.0183
with shape $+\sigma$	$e_{R}^{-} e_{L}^{+}$	± 0.130	± 0.0217	± 0.0198

correlation matrix (w/ shape $+\sigma \mathrm{P}(\mathrm{LR})$)

$$
\rho=\left(\begin{array}{ccc}
1 & -0.848 & 0.0136 \\
& 1 & -0.0124 \\
& & 1
\end{array}\right)
$$

Angular Asymmetry : 250GeV

The Lorentz structure

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H
$$

$$
+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H
$$

Change b

Angular Asymmetry: 500GeV

The Lorentz structure

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H
$$

$$
+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H
$$

Kinematical distribution with the ZZ-fusion : 250 GeV

Kinematical distribution with the ZZ-fusion : 500 GeV

$$
\begin{aligned}
\mathcal{L}_{Z Z H}= & M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H \\
& +\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H
\end{aligned}
$$

Examples : Reconstructed angular distribution \& Migration matrix

$\mathrm{ZH} \rightarrow \mu \mu \mathrm{H} @ 250 \mathrm{GeV}$

$$
\mathrm{ZH} \rightarrow \mathrm{qqH}(\mathrm{H} \rightarrow \mathrm{bb}) @ 250 \mathrm{GeV}
$$

Reconstructed distribution of $\Delta \Phi$ vs $\cos \theta z$ binned in 10×10

Lepton channel is very clean signature. Hadron channel has relatively large migration.

Sensitivity to ZZH couplings

Contours showing sensitivities with three parameter space.
$250 \mathrm{fb}^{-1}$ and $500 \mathrm{fb}^{-1}$ are assumed as the integrated luminosity for 250 and 500 GeV .

bt can be evaluated through
only shape information @ 250 and 500 GeV
Correlation a and b is strong
because σ info. is much stronger than that of the shape

		a_{Z}	b_{Z}	\tilde{b}_{Z}
$Z H$	$e_{L}^{-} e_{R}^{+}$	-	± 0.0199	± 0.0183
with shape	$e_{R}^{-} e_{L}^{+}$	-	± 0.0215	± 0.0198
$Z H$	$e_{L}^{-} e_{R}^{+}$	± 0.116	± 0.0201	± 0.0183
with shape $+\sigma$	$e_{R}^{-} e_{L}^{+}$	± 0.130	± 0.0217	± 0.0198
$Z H+Z Z$-fusion	$e_{L}^{-} e_{R}^{+}$	-	± 0.0200	± 0.0174
with shape	$e_{R}^{-} e_{L}^{+}$	-	± 0.0214	± 0.0190
$Z H+Z Z$-fusion	$e_{L}^{-} e_{R}^{+}$	± 0.061	± 0.0134	± 0.0174
with shape $+\sigma$	$e_{R}^{-} e_{L}^{+}$	± 0.071	± 0.0156	± 0.0188

$@ 500 \mathrm{GeV}$ the shape quickly changes the correlation can be disentangled.

Power of each process for the anomalous couplings

ZH : leptonic(e/ μ)/ hadronic (q)
ZZ : H \rightarrow bb

FIG. 25. A plot shows the sensitivity to the anomalous $Z Z H$ couplings. Fitting is performed with simultaneous fitting in three free parameter space, and each contour showing impact of each channel are projected into the $a_{Z}-b_{Z}$ parameter space. The integrated luminosity is assumed to be $250 \mathrm{fb}^{-1}$ with left-handed polarization $e_{L}^{-} e_{R}^{+}$.

FIG. 26. A plot shows the sensitivity to the anomalous $Z Z H$ couplings. Fitting is performed with simultaneous fitting in three free parameter space, and each contour showing impact of each channel are projected into the $a_{Z}-b_{Z}$ parameter space. The integrated luminosity is assumed to be $500 \mathrm{fb}^{-1}$ with left-handed polarization $e_{L}^{-} e_{R}^{+}$.

