WIMP Search in the Mono-Photon Channel

Moritz Habermehl

LCWS '17 Strasbourg

26 October 2017

Exclusion Limits

Data Quality

WIMP Search in the Mono-Photon Channel

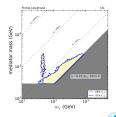
WIMP Search at the ILC

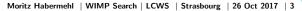
Event Selection

Exclusion Limits

Data Quality: Photon Reconstruction (in Mokka)

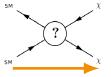

The Physics Case

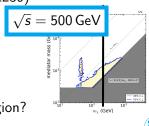

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders


 \Rightarrow idea: SM particles \rightarrow WIMP pair production

- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230)
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Can lepton colliders help to probe

the surviving region?

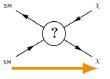




The Physics Case

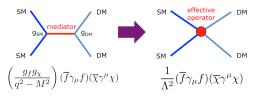
- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders
 - \Rightarrow idea: SM particles \rightarrow WIMP pair production
- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230)
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Can lepton colliders help to probe

the surviving region?



The Physics Case

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders
 - \Rightarrow idea: SM particles \rightarrow WIMP pair production
- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230)
- likelihood analysis of

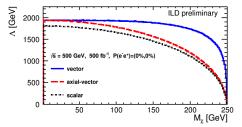

 Planck, PICO-2L, LUX, XENON100
 LEP, LHC
 plus LZ, PICO250 projections

 Can lepton colliders help to probe the surviving region?
 Moritz Habermehl | WIMP Search | LCWS | Strasbourg | 26 Oct 2017 | 3

Theoretical Framework: Effective Operators

construct minimal effective Lagrangian

• assumption:

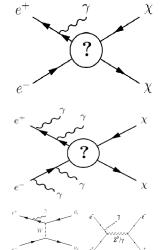

new physics interaction is mediated by a heavy particle

- interaction can be integrated out
- four-point contact interaction
- \Rightarrow general approach
- \Rightarrow only one parameter ("energy scale of new physics")

 $\Lambda = M_{mediator} / \sqrt{g_f g_{\chi}}$

Sensitivities for effective operators

- 3σ exclusion limits
- Λ as a function of M_{χ}
- M_{χ} up to $\sqrt{s}/2$ can be tested
- $\sigma \propto 1/\Lambda^4$


setup and cross-sections formulas from Chae and Perelstein JHEP05(2013)138

vector	$(\overline{f}\gamma^{\mu}f)(\overline{\chi}\gamma_{\mu}\chi)$	$\sigma_{LR} = \sigma_{RL}$	$\sigma_{LL} = \sigma_{RR} = 0$
axial-vector	$(\overline{f}\gamma^{\mu}\gamma^{5}f)(\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)$	$\sigma_{LL} = \sigma_{RR}$	$\sigma_{LR} = \sigma_{RL} = 0$
scalar (s-channel)			$\sigma_{LR} = \sigma_{RL} = 0$

WIMP Detection at ILC

- Signal
 - WIMP pair production with a photon from initial state radiation $a^+a^$
 - $e^+e^- o \chi\chi\gamma$
 - quasi model-independent
 - single photon in an "empty" detector
 - \rightarrow missing four-momentum
 - observables: E_{γ} , θ_{γ}
- Main Background Processes
 - Neutrino pairs $e^+e^- \rightarrow \nu \bar{\nu} \gamma$
 - irreducible
 - polarisation: enhance or suppress
 - Bhabha scattering $e^+e^- \rightarrow e^+e^-\gamma$
 - huge cross section
 - cross section rises for low polar angles
 - mimics signal if leptons in forward region are undetected

Exclusion Limits

Data Quality

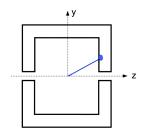
WIMP Search in the Mono-Photon Channel

WIMP Search at the ILC

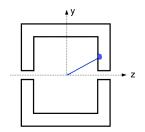
Event Selection

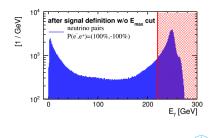

Exclusion Limits

Data Quality: Photon Reconstruction (in Mokka)

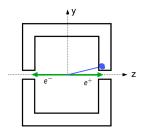


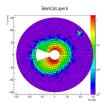
signal definition (mono-photon)

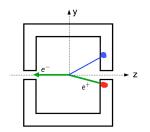

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$ need tracker to distinguish photon from electron

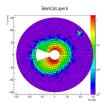


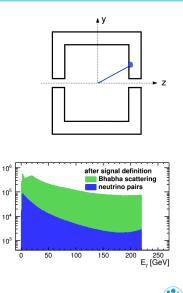
- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV

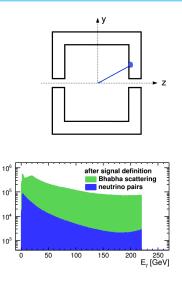

avoid large background at Z return




- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
 - ensure Bhabha lepton hits detector
 - follows inner rim of BCal (⇔ φ-dependent)
 - $p_{T,\gamma} > 5.71 \, \text{GeV}$ for $|\phi| \leq 35$
 - $p_{T,\gamma} > 1.97 \text{ GeV}$ for $|\phi| > 35$
 - in BCal coordinates (7 $^{\circ}$ tilted)

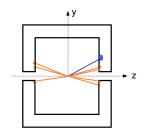


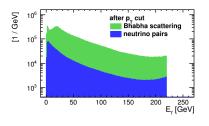

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
 - ensure Bhabha lepton hits detector
 - follows inner rim of BCal (⇔ φ-dependent)
 - $p_{T,\gamma} > 5.71 \, \text{GeV}$ for $|\phi| \leq 35$
 - $p_{T,\gamma} > 1.97 \text{ GeV}$ for $|\phi| > 35$
 - in BCal coordinates (7 $^{\circ}$ tilted)



- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum

[1 / GeV]


- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)
 - \rightarrow suppress Bhabhas
 - \rightarrow keep neutrinos

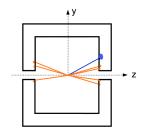


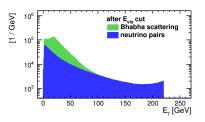
[1 / GeV]

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)
 - \rightarrow suppress Bhabhas
 - \rightarrow keep neutrinos
 - veto events with track

with $p_T > 3 \,\mathrm{GeV}$

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)

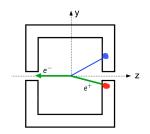

 \rightarrow suppress Bhabhas

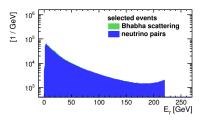

- \rightarrow keep neutrinos
- veto events with track

with $p_T > 3 \,\text{GeV}$

- max. additional visible energy
 - add up all PFO energies
 - only consider particles if $\mathsf{E}>5\,\mathsf{GeV}$
 - allow a max. energy sum of $10\,\text{GeV}$
 - or 30 GeV, if the extra energy is

from reconstructed neutrons or pions


- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)


 \rightarrow suppress Bhabhas

- \rightarrow keep neutrinos
- veto events with track

with $p_T > 3 \, \text{GeV}$

- max. additional visible energy
- no reconstructed BCal clusters

Exclusion Limits

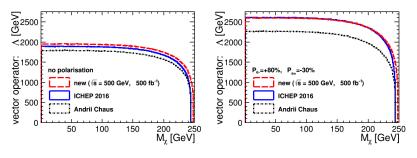
Data Quality

WIMP Search in the Mono-Photon Channel

WIMP Search at the ILC

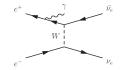
Event Selection

Exclusion Limits


Data Quality: Photon Reconstruction (in Mokka)

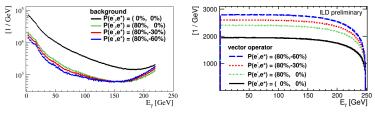
Comparison to Previous Results

• 2016

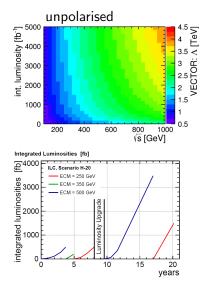

- latest reconstruction tools: e.g. BeamCalClusterReco
- better background suppression
- 2017
 - more realistic (larger) Bhabha background
 - better signal definition \rightarrow larger signal-to-noise ratio

Moritz Habermehl | WIMP Search | LCWS | Strasbourg | 26 Oct 2017 | 10

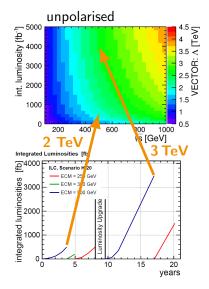
Role of polarisation


- background
 - neutrinos can be suppressed for right-handed e⁻ and left-handed e⁺

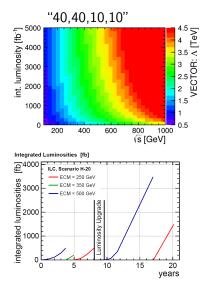
N _{500fb⁻¹}	unpolarised	$P_{e-}=+80\%$ $P_{e+}=-30\%$
$\nu\nu\gamma$	3761	820
$e^+e^-\gamma$	187	187


WIMPs

- production can be enhanced
- · chirality of interaction can be tested

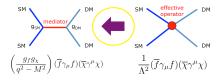

Moritz Habermehl | WIMP Search | LCWS | Strasbourg | 26 Oct 2017 | 11

Sensitivity in different operation scenarios


- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
- allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- already at 250 GeV new phase space can be explored
 - \sqrt{s} (slightly) higher than at LEP
 - more luminosity
 - polarisation
- ILC can test energy scales of a few TeV

Sensitivity in different operation scenarios

- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
- allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- already at 250 GeV new phase space can be explored
 - \sqrt{s} (slightly) higher than at LEP
 - more luminosity
 - polarisation
- ILC can test energy scales of a few TeV


Sensitivity in different operation scenarios

- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
- allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- already at 250 GeV new phase space can be explored
 - \sqrt{s} (slightly) higher than at LEP
 - more luminosity
 - polarisation
- ILC can test energy scales of a few TeV

Simplified models and effective operators

- at lepton colliders: OK to use effective operators
- at LHC: simplified models

- 3 free parameters \Rightarrow present limits for M_{med} & fix couplings mediator mass
 - coupling to SM $\ \ \Rightarrow 0.25 \rightarrow$ avoid sizeable di-jet production

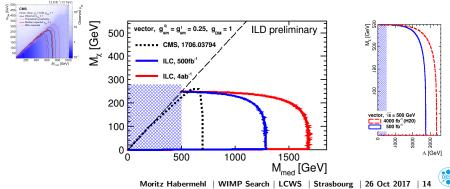
- coupling to DM
$$\Rightarrow$$
 1

• instead of
$$\Lambda = \frac{M_{med}}{\sqrt{g_{SM} \cdot g_{DM}}}$$

Exclusion Limits

Data Quality

Comparing LHC and lepton collider limits


 recent CMS results for mono-photon WIMP search: arxiv:1706.03794

vector operator

ILC limits

• assumption:
$$g_{sm}^q = g_{sm}^l$$

• translate into simplified models: $M_{med} = \sqrt{g_{SM} \cdot g_{DM}} \cdot \Lambda = 0.5 \cdot \Lambda$

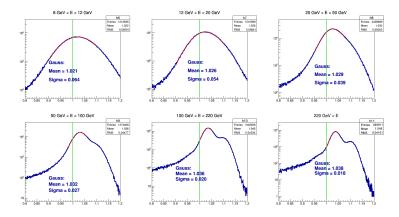
Exclusion Limits

Data Quality

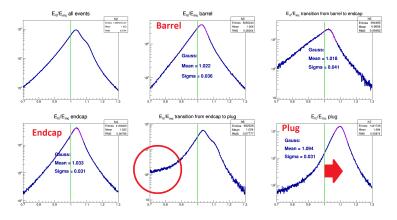
WIMP Search in the Mono-Photon Channel

WIMP Search at the ILC

Event Selection

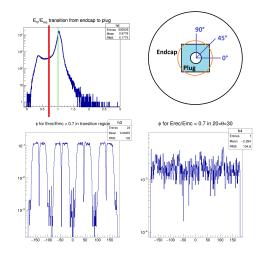

Exclusion Limits

Data Quality: Photon Reconstruction (in Mokka)


Reconstructed Energy as a Function of the Energy

- reconstructed energy ${\approx}2{\text -}4\%$ too high
- level rises with energy
- second peak around 110%

Reconstructed Energy as a Function of the Polar Angle



- barrel and endcap OK
- in plug reconstructed energy 10% too high
- transition region between endcap and plug: tail

Transition region between endcap and plug

- peak at too low reconstructed energies
- square shape
 - \rightarrow look at $\phi\text{-distribution}$
 - for $9.3^{\circ} < \theta < 12^{\circ}$ (transition region)
 - E_{reco}/E_{MC} < 0.7
- reconstruction fails for 10% of photon clusters
 - fine around 0,90,180,270 degrees (γ fully contained in endcap)
 - fine around 45,135,... degrees (γ fully contained in plug)

Using MC information I

- How do photon reconstruction imperfections influence the WIMP limits ?
- idea
 - true MC energy and $p_{\mathcal{T}}$ of selected photons
 - smear with test beam ECal resolution: $\frac{16.53\%}{\sqrt{E}+1.07\%}$
 - use information from full reconstruction to select events ("empty detector")

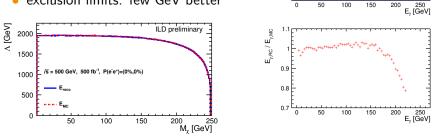
[1 / GeV] 106

10⁵

10⁴

10³

50 100 150


Bhabha scattering

200

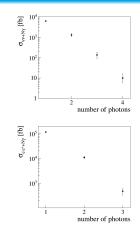
neutrino pairs

Using MC Information II

- similar number of selected events
 - 1.1% more with MC information
 - up to 25% in plug migrate to energies higher than E_{max}
- exclusion limits: few GeV better

 \Rightarrow effect of reconstruction imperfections can be neglected

Summary: WIMP Search


- ILC can explore new phase space
 - testing of coupling to leptons \rightarrow complementary to LHC and direct detection searches
- with the new MC samples...
 - ... the limits are similar to previously
 - larger signal phase space
 - better reconstruction tools
 - ... the estimates are more realistic
 - Bhabha phase space is fully populated
 - signal definition ensure that Bhabhas are distinguished from signal-like events
- OK to use photons from full simulation despite the reconstruction imperfections

Event Generation with WHIZARD 2.4.4

- ISR treatment
 - "hard" photons are put in matrix element
 gives correct E and 0
 - ightarrow gives correct E $_\gamma$ and $heta_\gamma$
 - \rightarrow control over photon number
 - additionally: WHIZARD's ISR routine

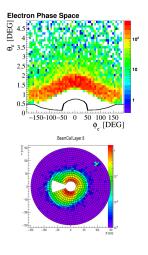
 (all orders of soft-collinear photons,
 first three orders of hard-collinear photons)
 → correct cross-section
 photons are constraint to θ = 0
 double counting is explicited
 - \Rightarrow double counting is avoided
- theory uncertainty: arbitrary cuts
 - matrix element photons need minimum θ (collinear divergence) and minimum energy (infra-red divergence) $\rightarrow p_{T,\gamma} < 0.1 \,\text{GeV}$
 - at the moment, Whizard does not allow more realistic ISR treatment

Status of WIMP Analysis at ILD

- Christoph Bartels, 2011
 - full detector simulation at $\sqrt{s} = 500 \,\mathrm{GeV}$
 - Whizard 1.96 with RDR beam parameters
 - ILCSoft v01-06
 - detector models: ILD_00, partially LDC_PrimeSc_01
 - interpretation: cosmological approach
- Andrii Chaus, 2014: re-interpretation: effective operators (Λ)
- me, since 2014:
 - full detector simulation at $\sqrt{s} = 500 \, {
 m GeV} + {
 m extrapolation}$
 - Whizard 2.2.4 with TDR beam spectrum (Circe2)
 - improved reconstruction in ILCSoft v17-11
 - Bhabha phase space and new L*
- Shigeki Matsumoto et al.: likelihood analysis
- Daniel Dercks: uses WIMP search to test CheckMATE

Monte Carlo Samples

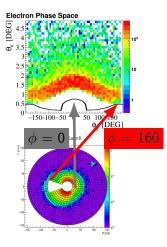
- generated with WHIZARD: completely new setup
- centrally produced by ILD
 - detector simulation: Mokka, ILD_o1_v05 (TDR)
 - reconstruction: Marlin, latest version


	cross-section	events	int. luminosity
neutrino pairs: $ uar u + 1$ -4 γ			
$P(e^{-})=L, P(e^{+})=R$	28093	14,745,059	524.9
$P(e^{-})=R, P(e^{+})=L$	1938	1,161,407	599.4
Bhabha scattering: $e^-e^+ + 1-3\gamma$			
$P(e^{-})=L, P(e^{+})=L$	123911	2,994,007	24.2
$P(e^{-})=L, P(e^{+})=R$	133071	2,994,006	22.5
$P(e^{-})=R, P(e^{+})=L$	130234	2,994,006	23.0
$P(e^{-})=R, P(e^{+})=R$	123917	2,994,007	24.2

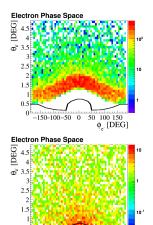
- signal events
 - reweigh $\nu\bar{\nu}$ events according to WIMP mass, spin ...
 - weight: $d\sigma(e^+e^- \rightarrow \chi \chi \gamma)/dE_{\gamma} \cdot d\sigma(e^+e^- \rightarrow \nu \bar{\nu} \gamma)/dE_{\gamma}$

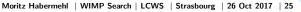
Moritz Habermehl | WIMP Search | LCWS | Strasbourg | 26 Oct 2017 | 24

Event Generation: Why new Samples?


- Bhabha samples used before: WHIZARD (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_{e} pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)

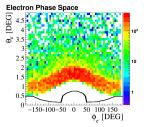
Event Generation: Why new Samples?

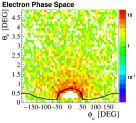

- Bhabha samples used before: WHIZARD (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_{e} pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)


Event Generation: Why new Samples?

- Bhabha samples used before: WHIZARD (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)
- new sample with $\mathsf{M}_{inv}>1\,\mathsf{GeV}$
 - \Rightarrow gap is closed

-150-100-50 0

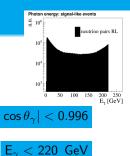

50 100 150 φ_ [DEG]



Event Generation: Why new Samples?

- Bhabha samples used before: WHIZARD (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)
- new sample with M_{inv} > 1 GeV
 ⇒ gap is closed
- only now: realistic estimate of Bhabha background possible

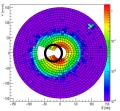
Event Selection


Exclusion Limits

Signal Definition

- observables: E $_{\gamma}$, $heta_{\gamma}$
- motivations for signal defining conditions
 - distinguish photon from e⁻/e⁺
 → need tracker: maximum cos(θ)
 - avoid large backgrounds at Z return (242 GeV for $\sqrt{s} = 500$ GeV): maximum E_{γ}
 - distinguish photon from noise: $E_{\gamma} > 2 \,\text{GeV}$
 - ensure that one e^-/e^+ in Bhabha events is detected,
 - i.e. does not go down the beam pipe \rightarrow minimum $p_{\mathcal{T},e}$
 - \rightarrow counterbalanced by minimum p_{T,\gamma}
- in order to describe BeamCal hole best: ϕ dependent sig. def.
 - $p_{T,e} > 5.7 \, {
 m GeV}$ for $|\phi| \ge 141.5$
 - \Leftrightarrow p_{T, \gamma} > 5.7 GeV for $|\phi| \leq 38.5$

 \Leftrightarrow p_{T,\gamma} > 2.0 GeV for $|\phi| > 38.5$


• $p_{T,e}>$ 2.0 GeV for $|\phi|<$ 141.5

Signal Definition: Why New Samples?

- 1. old signal definition: $p_{\mathcal{T},min}$ was too small
- $\rightarrow~e^-e^+$ from Bhabha events could escape detection $_{\scriptscriptstyle BearCal Layer3}$

- 2. $p_{T,min}$ instead of $E_{\gamma,min}$ and $\theta_{\gamma,min}$
- $\rightarrow\,$ leads to larger phase space of signal definition
- \Rightarrow pre-selection cuts adjusted to new signal definition

Limit Calculation

- 1. reweigh $\nu\bar{\nu}$ events to WIMP events
- 2. signal input: photon energy distribution for different M_χ

3. background input: photon energy distribution

28