

Top electroweak couplings study using di-leptonic state at $\sqrt{s} = 500$ GeV, ILC with the Matrix Element Method

1124

Yo Sato^A

Akimasa Ishikawa^A, Emi Kou^B, Francois Le Diberder^B, Hitoshi Yamamoto^A,

Junping Tian^C, Keisuke Fujii^D, Ryo Yonamine^A

Tohoku University^A, LAL^B, University of Tokyo^C, KEK^D

Kinematical Reconstruction : Strategy

Neutrinos and photon of ISR cannot be reconstructed by detectors.

There are **7 unknowns** in di-muonic state of top pair production.

 $P_{x,\nu}, P_{y,\nu}, P_{z,\nu}, P_{x,\overline{\nu}}, P_{y,\overline{\nu}}, P_{z,\overline{\nu}}, P_{z,\gamma_{\rm ISR}}$

To recover them, we impose 8 constraints,

- Initial state constraints : $E_{total} = 500 \text{ GeV}, \vec{P}_{total} = \vec{0}$
- Mass constraints : $m_t = m_{\bar{t}} = 174 \text{ GeV}, m_{W^+} = m_{W^-} = 80.4 \text{ GeV}$

There are enough constraints to determine the missing variables.

Kinematical Reconstruction : Algorithm

Introduce **4** free parameters : $P_{x,v}$, $P_{y,v}$, $P_{z,v}$, $P_{z,\gamma_{ISR}}$

Other missing variables are defined as follows;

$$P_{x,\overline{v}} = -(P_{x,\text{Visible}} + P_{x,v}), P_{y,\overline{v}} = -(P_{y,\text{Visible}} + P_{y,v}), P_{z,\overline{v}} = -(P_{z,\text{Visible}} + P_{z,v} + P_{z,\gamma_{\text{ISR}}})$$

(All physics variables also can be computed using these parameters.)

Define the likelihood function;

 $L_0 = BW(m_t, 174)BW(m_{\bar{t}}, 174)BW(m_{W^+}, 80.4)BW(m_{W^-}, 80.4)Gaus(E_{total}, 500)$ (BW : Breit-Wigner function, Gaus : Gaussian function, other parameters are written in backup)

To correct the energy resolution of b-jets reconstruction, we add **2** parameters, $E_b, E_{\overline{b}}$, and resolution functions, R, to the likelihood function.

$$L = L_0 * R(E_b, E_b^{\text{reconstructed}}) R(E_{\overline{b}}, E_{\overline{b}}^{\text{reconstructed}})$$

Energy resolution of b-jets

$$G(\sigma_j, K; E_b^{\text{Measurement}})$$

$$\propto \exp\left[-\left(\frac{E_b^{\text{Measurement}} - E_b^{\text{MC}}}{\sigma_j * (E_b^{\text{Measurement}})^K}\right)^2\right]$$

Define the resolution function R as

$$R = c_1 G_1 + c_2 G_2 + c_3 G_3$$

Results of fit :

$$c_1 = 0.50, \sigma_{j,1} = 0.77, K_1 = 0.45$$

 $c_2 = 0.48, \sigma_{j,2} = 6.4, K_2 = 0.31$
 $c_3 = 0.02, \sigma_{j,3} = 4.7, K_3 = 0.69$

Backup

Kinematical Reconstruction

For simplicity, we define $q = -2 \log L + C$ (scaled as the minimum value becomes 0)

There are two possibilities for combination of b-jet and muon.

→ Define *the best candidate* as a candidate having **smaller** q and q_{min} as q of the best candidate. One can check that it is true or miss combination by generator information.

 q_{\min} distribution of Left polarization events (left : whole distribution, right : zoomed one)

 \rightarrow Cut on q_{\min} is useful to reduce the background and miss combination events.

ISR photon

Scatter plots between MC and reconstructed of Left polarization and signal events

(left : $P_{Z,\gamma_{\text{ISR}}}$, right : mass of top pair)

Small correlations between MC and reconstructed are observed.

 \rightarrow Cut on $P_{Z,\gamma_{ISR}}$ or M_{tt} is useful to reduce hard ISR events.

ISR photon

 $P_{Z,\gamma_{ISR}}$ distribution of miss combination events are wider than true combination \rightarrow Cut on $P_{Z,\gamma_{ISR}}$ is also useful to reduce miss combination events

Cut table

250 fb ⁻¹ (-0.8,+0.3) Left	initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8	$q_{ m min} < 3 \ \& \ \left P_{z,\gamma} ight < 50 \ { m GeV}$
Signal <i>bbμμνν</i> (True)	2061	2725	1921 (80.9%) (e =	945 (90.7%) (e =
Signal <i>bbμμνν</i> (Miss)	2961	(e = 92.0 %)	453 80.2%) (19.1%)	97 35.2%) (9.3%)
<i>bbllνν</i> (except <i>bbμμνν</i>)	23609	387	335	71
bblvqq	104114	40	31	3
qqll (ZZ)	91478	13800	2519	21
<i>ll</i> (weight = 4)	212274 (→ 849096)	74961 (→ 299844)	90 (→ 360)	0
<i>lνlν</i> (WW) (weight = 4)	377058 (→ 1508232)	1884 (→ 7536)	3 (→ 12)	0
lllvlv (llWW)	3021	947	19	0

Top EW Couplings Study

- Top quark is the heaviest particle in the SM. Its large mass implies that it is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)
 - \rightarrow Top EW couplings are good probes for New physics behind EWSB

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V_l^v \bar{t} \gamma^l (F_{1V}^v + F_{1A}^v \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v \gamma_5) t \right]$$

In new physics models, such as composite models, the predicted deviation of coupling constants, g_L^Z , g_R^Z (= $F_{1V}^Z \mp F_{1A}^Z$) from SM is typically 10 %

 Z/γ^*

Di-leptonic State of the top pair production

Top pair production has three different final states:

- Fully-hadronic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}q\bar{q})$ 46.2 %
- Semi-leptonic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}l\nu)$ 43.5%
- **Di-leptonic state** $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}l\nu l\nu)$ **10.3%**

Advantage

- More observables be computed
- \rightarrow Higher intrinsic sensitivity to the form factors, in principle.

Difficulty

- Two missing neutrinos
- Lower statistics : 6 times less events than the semi-leptonic state $((2/3 \times 43.5 \%) / (4/9 \times 10.3 \%) = \sim 6.3)$

Pre-selection

The quality cut is necessary to reject the b-jet miss-assignment events when we don't use the b-charge reconstruction. The cut might be also effective to reject background events.

We use only two loose constraints, called **Pre-selection**, before the kinematical reconstruction of top quark, which is useful to shorten the CPU time.

- 1 isolated μ^- and 1 isolated μ^+
- 1 (or 2) jet has high b-tag value obtained by the LCFI Plus (b-tag1 > 0.8 or b-tag2 > 0.8)

Other constraints that can be considered :

Thrust value, Visible energy, Mass of $\mu^{-}\mu^{+}$, ...

Pre-selection : Cut table

250 fb ⁻¹ (-0.8, +0.3) Left	Initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8
Signal bbμμνν	2961	2725 (e = 92.0%)	2374 (e = 80.2%)
bbllvv (except bbμμvv)	23609	387	335
bblvqq	104114	40	31
qqll (ZZ)	91478	13800	2519
<i>ll</i> (weight = 4)	212274 (→849096)	74961 (→ 299844)	90 (→ 360)
<i>lvlv (WW</i>) (weight = 4)	377058 (→ 1508232)	1884 (→ 7536)	3 (→ 12)
lllvlv (llWW)	3021	947	19

Pre-selection : Cut table

250 fb ⁻¹ (+0.8, -0.3) Right	initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8
Signal bbμμνν	1255	1162 (e = 92.6%)	1040 (e = 82.9%)
bbllvv (except bbμμvv)	10181	160	138
bblvqq	45053	18	12
qqll (ZZ)	46344	6980	1237
<i>ll</i> (weight = 4)	161371 (→ 64524)	57916 (→ 231664)	61 (→ 244)

Cut table

250 fb ⁻¹ (-0.8,+0.3) Right	initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8	$q_{ m min} < 3 \ \& \left P_{z,\gamma} ight < 50 \ { m GeV}$
Signal <i>bbμμνν</i> (True)	1955	1162	874 (84.0%) (e =	437 (94.2%) (e =
Signal <i>bbμμνν</i> (Miss)	1255	(e = 92.6 %)	166 82.9%) (16.0%)	27 37.0%) (5.8%)
<i>bbllvv</i> (except <i>bbμμνν</i>)	10181	160	138	30
bblvqq	45053	18	12	0
qqll (ZZ)	46344	6980	1237	6
<i>ll</i> (weight = 4)	161371 (→ 64524)	57916 (→ 231664)	61 (→ 244)	0

Parameters of Likelihood function

Breit-Wigner function of mass of top and W

$$BW(m) \propto \frac{1}{1 + \left(\frac{m - m_0}{m_0 \Gamma_0}\right)^2}$$

$$m_{t,0} = m_{\bar{t},0} = 174, m_{W^+,0} = m_{W^-,0} = 80.4, \Gamma_0 = 5$$

Gaussian function of Beam energy spread

$$Gaus(E_{total}) \propto \exp\left[-\left(\frac{E_{total} - 500}{0.39}\right)^2\right]$$