EFT fit on top quark EW couplings

M. Perelló Roselló, M. Vos (IFIC - U. Valencia/CSIC) P. Roloff, R. Ström (CERN)
G. Durieux (DESY), C. Zhang (IHEP)

Acknowledging input/contributions from:
M. Boronat, J. Fuster, I. García, P. Gomis, E. Ros (IFIC - U. Valencia/CSIC)
R. Pöschl, F. Richard (Orsay, LAL)

Introduction

Top quark couplings: form factors

Objective: to study the potential of a global fit in the top EW sector.
Form-factors $\Gamma_{\mu}^{t \bar{t} X}\left(k^{2}, q, \bar{q}\right)=i e\left\{\gamma_{\mu}\left(F_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{1 A}^{X}\left(k^{2}\right)\right)-\frac{\sigma_{\mu \nu}}{2 m_{t}}(q+\bar{q})^{\nu}\left(i F_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{2 A}^{X}\left(k^{2}\right)\right)\right\}$
CP Conserving

Top quark couplings: EFT

Effective Field Theory

$$
\mathcal{L}_{e f f}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} O_{i}+\mathcal{O}\left(\Lambda^{-4}\right)
$$

See 'EFT fromalism for top physics" from C. Grojean on
Tuesday for a theory motivation dim-6 operators on tt production and decay...

$$
\begin{aligned}
O_{\varphi q}^{1} & \equiv \frac{y_{t}^{2}}{2} \quad \bar{q} \gamma^{\mu} q \quad \varphi^{\dagger} \overleftrightarrow{\Delta}_{\mu} \varphi \\
O_{\varphi q}^{3} & \equiv \frac{y_{t}^{2}}{2} \quad \bar{q} \tau^{I} \gamma^{\mu} q \quad \varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi \\
O_{\varphi u} & \equiv \frac{y_{t}^{2}}{2} \quad \bar{u} \gamma^{\mu} u \quad \varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu} \varphi} \\
O_{\varphi u d} & \equiv \frac{y_{t}^{2}}{2} \quad \bar{u} \gamma^{\mu} d \quad \varphi^{T} \epsilon i D_{\mu} \varphi \\
O_{u G} & \equiv y_{t} g_{s} \quad \bar{q} T^{A} \sigma^{\mu \nu} u \epsilon \varphi^{*} G_{\mu \nu}^{A} \\
O_{u W} & \equiv y_{t} g_{W} \\
\bar{q} \tau^{I} \sigma^{\mu \nu} u & \epsilon \varphi^{*} W_{\mu \nu}^{I} \\
O_{d W} & \equiv y_{t} g_{W} \\
\bar{q} \tau^{I} \sigma^{\mu \nu} d & \epsilon \varphi^{*} W_{\mu \nu}^{I} \\
O_{u B} & \equiv y_{t} g_{Y} \quad \bar{q} \quad \bar{q} \sigma^{\mu \nu} u \quad \epsilon \varphi^{*} B_{\mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
O_{l q}^{1} & \equiv \bar{q} \gamma_{\mu} q \quad \bar{l} \gamma^{\mu} l \\
O_{l q}^{3} & \equiv \bar{q} \tau^{I} \gamma_{\mu} q \bar{l} \tau^{I} \gamma^{\mu} / \\
O_{l u} & \equiv \bar{u} \gamma_{\mu} u \quad \bar{l} \gamma^{\mu} l \\
O_{e q} & \equiv \bar{q} \gamma_{\mu} q \quad \bar{e} \gamma^{\mu} e \\
O_{e u} & \equiv \bar{u} \gamma_{\mu} u \quad \bar{e} \gamma^{\mu} e
\end{aligned}
$$

Z/y tt vertices

Contact interactions

$$
\begin{aligned}
& O_{l e q u}^{S} \equiv \bar{q} u \epsilon \bar{l} e \\
& O_{l e d q} \equiv \bar{d} q \bar{l} e
\end{aligned}
$$

Different EFT basis

Transformation between effective operators and form-factors:

$$
\begin{aligned}
& F_{1, V}^{Z}-F_{1, V}^{Z, S M}=\frac{1}{2}\left(\underline{C_{\varphi Q}^{(3)}-C_{\varphi Q}^{(1)}-C_{\varphi t}}\right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}}=-\frac{1}{2} \underline{C_{\varphi q}^{V}} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\
& F_{1, A}^{Z}-F_{1, A}^{Z, S M}=\frac{1}{2}\left(-\underline{C_{\varphi Q}^{(3)}+C_{\varphi Q}^{(1)}-C_{\varphi t}}\right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}}=-\frac{1}{2} \underline{C_{\varphi q}^{A}} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\
& F_{2, V}^{Z}=\left(\underline{\operatorname{Re}\left\{C_{t W}\right\} c_{W}^{2}-\operatorname{Re}\left\{C_{t B}\right\} s_{W}^{2}}\right) \frac{4 m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}}=\operatorname{Re}\left\{\underline{C_{u Z}}\right\} \frac{4 m_{t}^{2}}{\Lambda^{2}} \\
& F_{2, V}^{\gamma}=\left(\underline{\operatorname{Re}\left\{C_{t W}\right\}+\operatorname{Re}\left\{C_{t B}\right\}}\right) \frac{4 m_{t}^{2}}{\Lambda^{2}}=\operatorname{Re}\left\{\underline{C_{u A}}\right\} \frac{4 m_{t}^{2}}{\Lambda^{2}} \\
& {\left[F_{2, A}^{Z}, F_{2, A}^{\gamma}\right] \propto\left[\operatorname{Im}\left\{C_{t W}\right\}, \operatorname{Im}\left\{C_{t B}\right\}\right]} \\
& 10 \text { operators in the global fit: } \\
& \text { - } 4 \text { CP-conserving ttX } \\
& \text { vertices } \\
& \text { - } 2 \text { CP-violating ttX vertices } \\
& \text { - } 4 \text { contact interactions }
\end{aligned}
$$

$$
\begin{array}{rlrl}
C_{l q}^{V} & \equiv C_{l u}+C_{l q}^{(1)}-C_{l q}^{(3)} & C_{e q}^{V} \equiv C_{e u}+C_{e q} \\
C_{l q}^{A} \equiv C_{l u}-C_{l q}^{(1)}+C_{l q}^{(3)} & C_{e q}^{A} \equiv C_{e u}-C_{e q}
\end{array}
$$

Observables

Observables sensitivity: $A_{\text {FB }}+$ cross-section

$e^{+} e^{-} \rightarrow t \bar{t}$, LO Durieux, Perelló, Vos, Zhang, to be published

Cross-section
Sensivitity: Relative change in cross
section due to non-zero
operator coefficient $\Delta \sigma(\mathrm{C}) / \sigma / \Delta \mathrm{C}$

Forward-backward asymmetry

Nice complementarity between Afb and crosssection to disentangle vector and axial operators.

Observables sensitivity: $A_{F B}+$ cross-section

$e^{+} e^{-} \rightarrow t \bar{t}, \mathrm{LO}$ Durieux, Perelló, Vos, Zhang, to be published

Forward-backward asymmetry
Sensivitity:
Relative change in cross to non-zero $\Delta \sigma(\mathrm{C}) / \sigma / \Delta \mathrm{C}$

Cross-section

Role of beams polarization:

Observables sensitivity: $A_{\text {FB }}+$ cross-section

$e^{+} e^{-} \rightarrow t \bar{t}, \mathrm{LO}$ Durieux, Perelló, Vos, Zhang, to be published

Forward-backward asymmetry

Nothing can be done with only one energy point!

- At least we need one low energy with high statistics for the vertices, and one high energy for the contact interactions.

Need for new observables to reduce the difference between individual and marginalized fits

Individual: assuming variation in only 1 parameter each time. 10^{-4}

CPV observables in the global fit arxiv:1710.06737

The CP-violating effects in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt}^{-}$manifest themselves in specific top-spin effects, namely CP-odd top spin-momentum correlations and tt ${ }^{-}$spin correlations.

$$
\begin{aligned}
& t \bar{t} \quad \rightarrow \quad \ell^{+}\left(\mathbf{q}_{+}\right)+\nu_{\ell}+b+\bar{X}_{\text {had }}\left(\mathbf{q}_{\bar{x}}\right) \\
& e^{+}\left(\mathbf{p}_{+}, P_{e^{+}}\right)+e^{-}\left(\mathbf{p}_{-}, P_{e^{-}}\right) \quad \rightarrow \quad t\left(\mathbf{k}_{t}\right)+\bar{t}\left(\mathbf{k}_{\bar{t}}\right) \\
& t \bar{t} \quad \rightarrow \quad X_{\mathrm{had}}\left(\mathbf{q}_{X}\right)+\ell^{-}\left(\mathbf{q}_{-}\right)+\bar{\nu}_{\ell}+\bar{b}
\end{aligned}
$$

CP-odd observables are defined with the four momenta available in tt semileptonic decay channel

$$
\begin{aligned}
& \mathcal{O}_{+}^{R e}=\left(\hat{\mathbf{q}}_{\bar{X}} \times \hat{\mathbf{q}}_{+}^{*}\right) \cdot \hat{\mathbf{p}}_{+}, \\
& \mathcal{O}_{+}^{I m}=-\left[1+\left(\frac{\sqrt{s}}{2 m_{t}}-1\right)\left(\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+}\right)^{2}\right] \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{q}}_{\bar{X}}+\frac{\sqrt{s}}{2 m_{t}} \hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+} \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{p}}_{+}
\end{aligned}
$$

- The way to extract the CP-violating form factor is to construct asymmetries sensitive to CP-violation effects

$$
\begin{aligned}
& \mathcal{A}^{R e}=\left\langle\mathcal{O}_{+}^{R e}\right\rangle-\left\langle\mathcal{O}_{-}^{R e}\right\rangle=c_{\gamma}(s) \operatorname{Re} F_{2 A}^{\gamma}+c_{Z}(s) \operatorname{Re} F_{2 A}^{Z} \\
& \mathcal{A}^{I m}=\left\langle\mathcal{O}_{+}^{I m}\right\rangle-\left\langle\mathcal{O}_{-}^{I m}\right\rangle=\tilde{c}_{\gamma}\left(s \operatorname{Im} F_{2 A}^{\gamma}+\tilde{c}_{Z}(s) \operatorname{Im} F_{2 A}^{Z}\right.
\end{aligned}
$$

$$
\begin{array}{|cc|}
\hline \mathcal{A}_{\gamma, Z}^{R e} & \mathcal{A}_{\gamma, Z}^{R e} \\
\\
\mathcal{A}_{\gamma, Z}^{I m} \mathrm{R} & \mathcal{A}_{\gamma, Z}^{I m} \mathrm{R} \\
\hline
\end{array}
$$

CPV observables in the global fit arxiv:1710.06737

Including CPV observables in the EFT global fit doesn't solve the problem

We still need to improve the marginalized fit

Individual: assuming variation in only 1 parameter each time.
Marginalized: assuming variation in all the parameters at the same time.

Further ideas using information from the decay: top quark polarization

Top quark polarization at different axes

J. A. Aguilar-Saavedra and J. Bernabeu. [arXiv:1005.5382].

Studied process

$$
e^{-} e^{+} \rightarrow t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow l \nu b \bar{b} q \bar{q}
$$

Using the lepton from the leptonic W as a polarimeter, we can calculate the top polarization in 3 different axes.

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta_{i}}=\frac{1}{2}\left(1+\alpha_{i} P \cos \theta_{i}\right)
$$

Helicity axis (z): measuring top polarization in the z top momentum direction.

Overlapping with the forward-backward asymmetry.

No new information.

Top quark polarization at different axes

J. A. Aguilar-Saavedra and J. Bernabeu. [arXiv:1005.5382].

Studied process

$$
e^{-} e^{+} \rightarrow t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow l \nu b \bar{b} q \bar{q}
$$

Using the lepton from the leptonic W as a polarimeter, we can calculate the top polarization in 3 different axes.

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta_{i}}=\frac{1}{2}\left(1+\alpha_{i} P \cos \theta_{i}\right)
$$

Normal axis (x): measuring top polarization in the x direction, perpendicular to the production plane.

Same definition that the CPV observable ORe (see CPV slide). Insensitive to CP conserving operators.

Top quark polarization at different axes

J. A. Aguilar-Saavedra and J. Bernabeu. [arXiv:1005.5382].

Transverse axis (y): measuring top polarization in the y direction, perpendicular to the x-z plane.

> Seems to be good for constraining the real part of the dipole operators (CuA and CuZ)

Studied process
$e^{-} e^{+} \rightarrow t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow l \nu b \bar{b} q \bar{q}$
Using the lepton from the leptonic W as a polarimeter, we can calculate the top polarization in 3 different axes.

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta_{i}}=\frac{1}{2}\left(1+\alpha_{i} P \cos \theta_{i}\right)
$$

Wtb vertex and W polarization

Wtb vertex

$$
\begin{aligned}
& O_{u W} \equiv y_{t} g_{W} \quad \bar{q} \tau^{I} \sigma^{\mu \nu} u \quad \epsilon \varphi^{*} W_{\mu \nu}^{I} \\
& O_{\varphi q}^{3} \equiv \frac{y_{t}^{2}}{2} \bar{q} \tau^{I} \gamma^{\mu} q \varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi \\
& O_{\varphi u d} \equiv \frac{y_{t}^{2}}{2} \quad \bar{u} \gamma^{\mu} d \quad \varphi^{T} \in i D_{\mu} \varphi \\
& O_{d W} \equiv y_{t} g_{W} \quad \bar{q} \tau^{I} \sigma^{\mu \nu} d \quad \epsilon \varphi^{*} W_{\mu \nu}^{I}
\end{aligned}
$$

Using the lepton from the leptonic W as a polarimeter, we can calculate the W polarization in 3 different axes (same motivation than top polarization).

4 operators affecting to the top quark decay, 2 of them appear at production too.

J. A. Aguilar-Saavedra and J. Bernabeu. [arXiv:1005.5382].

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{l}^{*}}=\frac{3}{8} F_{+}\left(1+\cos \theta_{l}^{*}\right)^{2}+\frac{3}{4} F_{0} \sin ^{2} \theta_{l}^{*}+\frac{3}{8} F_{-}\left(1-\cos \theta_{l}^{*}\right)^{2}
$$

Wtb vertex

$$
\begin{array}{lll}
O_{u W} \equiv y_{t} g_{W} & \bar{q} \tau^{I} \sigma^{\mu \nu} & u \epsilon \varphi^{*} W_{\mu \nu}^{I} \\
O_{\varphi q}^{3} \equiv \frac{y_{t}^{2}}{2} & \bar{q} \tau^{I} \gamma^{\mu} q & \varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \\
O_{\varphi u d} \equiv \frac{y_{t}^{2}}{2} & \bar{u} \gamma^{\mu} d & \varphi^{T} \epsilon i D_{\mu} \varphi \\
O_{d W} \equiv y_{t} g_{W} & \bar{q} \tau^{I} \sigma^{\mu \nu} d & \epsilon \varphi^{*} W_{\mu \nu}^{I}
\end{array}
$$

4 operators affecting to the top quark decay, 2 of them appear at production too.
$A T$ is proportional to the top quark transverse polarization

- Oфud and OdW only contribute quadratically (no SM interference).
- For these observables the dependence on $\mathrm{O}_{\phi \mathrm{q} 3}$ also completely drops out.

Sensitivity to the real part of OuW at 500 GeV (Durieux, MP, Vos, Chang PRELIMINARY)

$P\left(e^{+}, e^{-}\right)$	$(+30 \%,-80 \%)$		$(-30 \%,+80 \%)$	
observables	A^{T}	$A_{F B}^{W}$	A^{T}	$A_{F B}^{W}$
SM predictions	-0.6	-0.17	0.57	-0.29
in production	38 ± 1	9 ± 2	-25 ± 1	X
in decay	X	16 ± 2	X	11 ± 3
in prod. $\&$ decay	37 ± 1	26 ± 2	-24 ± 1	10 ± 3

Statistically optimal observables

G. Durieux @TopLC 2017:

https://indico.cern.ch/event/595651/contributions/

Statistically optimal observables
[Atwood,Soni ' 92] [Diehl,Nachtmann "94]
minimize the one-sigma ellipsoid in EFT parameter space.
(joint efficient set of estimators, saturating the Rao-Cramér-Fréchet bound: $V^{-1}=I$)

For small C_{i}, with a phase-space distribution $\sigma(\Phi)=\sigma_{0}(\Phi)+\sum_{i} C_{i} \sigma_{i}(\Phi)$, the statistically optimal set of observables is: $O_{i}(\Phi)=\sigma_{i}(\Phi) / \sigma_{0}(\Phi)$.

$$
\text { e.g. } \sigma(\phi)=1+\cos (\phi)+C_{1} \sin (\phi)+C_{2} \sin (2 \phi)
$$

1. asymmetries: $O_{i} \sim \operatorname{sign}\{\sin (i \phi)\}$
2. moments: $O_{i} \sim \sin (i \phi)$
3. statistically optimal: $O_{i} \sim \frac{\sin (i \phi)}{1+\cos \phi}$
\Longrightarrow area ratios $1.9: 1.7: 1$

Previous applications in $e^{+} e^{-} \rightarrow t \bar{t}$:
[Grzadkowski, Hioki '00] [Janot '15] [Khiem et al '15]

Construction based on the decomposition of the differential $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{t} \mathrm{t}^{-} \rightarrow \mathrm{bW}+^{-}$bW - cross section in terms of EFT helicity amplitudes.

They are constructed to maximally exploit the available differential information and extract the tightest constraints on parameters whose dependence is expanded to linear order only.

Statistically optimal observables sensitivities

Comparison in the global limits ($500 \mathrm{GeV}+1 \mathrm{TeV}$ for 2 pols.):

- Even better individual limits
- Global limits within a factor 1.3 to 3.5

(Few words about) Full-simulation

See "Top identification and ttbar reconstruction at CLIC" from R. Ström on Wednesday morning for more details

Full-simulation

Reconstructed process: $\mathrm{e}-\mathrm{e}+->\mathrm{tt}->4 \mathrm{j}+\mathrm{vl}$

CLIC380 and ILC500

- Resolved analysis - reconstruction of 3 separated jets for the hadronic top, and 1 for the leptonic top.

Problem on migrations (bad W-b pairing) in some angular distributions, solved using a quality cut with the consequent penalty in efficiency.

Alternative: reconstruction of b quark charge (see R. Poeschl talk on Tuesday afternoon)

Full-simulation

Reconstructed process: e-e+ $->\mathrm{tt}->4 \mathrm{j}+\mathrm{vl}$

CLIC1400 and CLIC3000

- Boosted analysis - reconstruction of 2 big jets, and then look inside them to substructure identification - Top Tagging.

See R. Ström talk to understand all the work behind this method

Results based on CLIC

Results based on CLIC

Top-philic basis (arXiv:1802.07237)

A top-philic scenario is obtained by assuming that new physics couples dominantly to the left-handed doublet and right- handed up-type quark singlet of the third generation as well as to bosons.

Results based on CLIC

Top-philic basis (arXiv:1802.07237)

A top-philic scenario is obtained by assuming that new physics couples dominantly to the left-handed doublet and right- handed up-type quark singlet of the third generation as well as to bosons.

Difference between individual and marginalised limit lower than a factor 2 for 4-fermion operators and lower than a factor 4 for 2-fermion

Results based on CLIC

Top-philic basis (arXiv:1802.07237)

A top-philic scenario is obtained by assuming that new physics couples dominantly to the left-handed doublet and right- handed up-type quark singlet of the third generation as well as to bosons.

CLIC at high energy has a great potential to constrain 4-fermion operators

Comparison with the LHC

Comparison with the LHC: vertices

PRELIMINARY

方

- Still preliminary, final results for ILC still coming.
- Limits between 2 and 3 orders of magnitude better than LHC.
- LHC limits could improve in future stages, but not prospects of this possible improvement at the moment.

Comparison with the LHC: contact interactions

- Still preliminary, final results for ILC still coming.
- Top-philic scenario allows for a comparison between qqtt and eett contact interaction.
- LHC results could be improved using boosted measurements on (MP, Vos, arXiv:1512.07542), but even so couldn't surpass LC limits (3-4 orders of magnitude better at the moment).

Summary on the global fit

- Cross-section + AFB alone are not optimal for a global EFT fit.
- CP-odd operators well constrained by CP-odd optimal observables.
- Only one energy point is not enough for constrain the full set of operators.
- Optimal observables seem to be the proper solution to the global fit.
- Results on the global fit ready for the CLICdp top quark paper (preparing pheno paper including ILC scenario).

Back up

CPV: Optimal CP-odd observables

The CP-violating effects in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt}^{-}$manifest themselves in specific top-spin effects, namely CP-odd top spin-momentum correlations and tt ${ }^{-}$spin correlations.

$$
e^{+}\left(\mathbf{p}_{+}, P_{e^{+}}\right)+e^{-}\left(\mathbf{p}_{-}, P_{e^{-}}\right) \quad \rightarrow \quad t\left(\mathbf{k}_{t}\right)+\bar{t}\left(\mathbf{k}_{\bar{t}}\right) \quad \begin{array}{llll}
t \bar{t} & \rightarrow & \ell^{+}\left(\mathbf{q}_{+}\right)+\nu_{\ell}+b+\bar{X}_{\text {had }}\left(\mathbf{q}_{\bar{x}}\right) \\
t \bar{t} & \rightarrow & X_{\mathrm{had}}\left(\mathbf{q}_{X}\right)+\ell^{-}\left(\mathbf{q}_{-}\right)+\bar{\nu}_{\ell}+\bar{b}
\end{array}
$$

- CP-odd observables are defined with the four momenta available in tt semileptonic decay channel

$$
\begin{aligned}
\mathcal{O}_{+}^{R e} & =\left(\hat{\mathbf{q}}_{\bar{X}} \times \hat{\mathbf{q}}_{+}^{*}\right) \cdot \hat{\mathbf{p}}_{+}, \\
\mathcal{O}_{+}^{I m} & =-\left[1+\left(\frac{\sqrt{s}}{2 m_{t}}-1\right)\left(\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+}\right)^{2}\right] \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{q}}_{\bar{X}}+\frac{\sqrt{s}}{2 m_{t}} \hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+} \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{p}}_{+}
\end{aligned}
$$

- The way to extract the CP-violating form factor is to construct asymmetries sensitive to CP-violation effects

$$
\begin{aligned}
& \mathcal{A}^{R e}=\left\langle\mathcal{O}_{+}^{R e}\right\rangle-\left\langle\mathcal{O}_{-}^{R e}\right\rangle=c_{\gamma}(s) \operatorname{Re} F_{2 A}^{\gamma}+c_{Z}(s) \operatorname{Re} F_{2 A}^{Z} \\
& \mathcal{A}^{I m}=\left\langle\mathcal{O}_{+}^{I m}\right\rangle-\left\langle\mathcal{O}_{-}^{I m}\right\rangle=\tilde{c}_{\gamma}\left(s \operatorname{Im} F_{2 A}^{\gamma}+\tilde{c}_{Z}(s) \operatorname{Im} F_{2 A}^{Z}\right.
\end{aligned}
$$

$$
\begin{array}{|cc|}
\hline \mathcal{A}_{\gamma, Z}^{R e^{\mathrm{L}}} & \mathcal{A}_{\gamma, Z}^{R e} \\
\\
\mathcal{A}_{\gamma, Z}^{I m} \mathrm{R} & \mathcal{A}_{\gamma, Z}^{I m} \mathrm{R} \\
\hline
\end{array}
$$

CPV: Full-simulation: CLIC@380GeV

(a) $\mathcal{O}_{+}^{R e}$

(c) $\mathcal{O}_{+}^{I m}$

(b) $\mathcal{O}_{-}^{R e}$

(d) $\mathcal{O}_{-}^{I m}$

polarization	$e_{L}^{-}\left(P_{e^{-}}=-0.8\right)$	$e_{R}^{-}\left(P_{e^{-}}=+0.8\right)$
$\mathcal{A}^{R e}$	-0.00006 ± 0.003	0.0072 ± 0.003
$\mathcal{A}^{I m}$	0.0004 ± 0.003	-0.0019 ± 0.003

- Asymmetries are compatible with zero within the statistical error
- Any distortions in the reconstructed distributions are expected to cancel in the asymmetries $A_{R e}$ and $A_{I m}$

Statistically optimal observables shape

Example for $500 \mathrm{GeV}(\mathrm{e}-, \mathrm{e}+)=(-0.8,0.3)$

Theory uncertainties under study

0
0
0
0
0
0
0
0
0
0

