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ABSTRACT

In many models with additional higgs sectors, e.g. 2HDM, NMSSM,
there exists a light scalar h, and the coupling of hZZ can be very
small, as expected from the Standard Model (SM) likeness of the 125-
GeV Higgs boson measured at the LHC. Light higgs bosons with sup-
pressed couplings to the Z boson would, in turn, have escaped from
the detection at LEP due to its limited luminosity. With a factor of
1000 higher luminosity and polarized beams, the International Lin-
ear Collider (ILC) is expected to have substantial discovery potential
for such states. Furthermore, searches for additional scalars at LEP
and LHC are usually dependent on the model details, such as decay
channels. Thus, it is necessary to have a more general analysis with
model-independent assumptions.

In this work, we perform a search for a light higgs boson produced
in association with Z boson at the ILC with a center-of-mass energy of
250 GeV, using the full Geant4-based simulation of the ILD detector
concept. In order to be as model-independent as possible, the analysis
is performed using the recoil technique, in particular with the Z boson
decaying into a pair of muons. As a preliminary result, the ILC’s
exclusion limits will be shown for different higgs masses between 30
and 115 GeV.†

∗yan.wang@desy.de
†Talk presented at the International Workshop on Future Linear Colliders (LCWS2017),

Strasbourg, France, 23-27 October 2017. C17-10-23.2.
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1 Introduction

Many new physics models predict one or more extra scalars. For example, in Two
Higgs Doublet Model (2HDM), there are two scalars and a pseudoscalar [1, 2].
In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), it has three
scalars and two pseudoscalars [3, 4, 5, 6, 7]. In these models, a scalar lighter than
125 GeV is well motivated. However, the 125 GeV Higgs boson measured at the
LHC is rather Standard Model (SM) like [8, 9]. Thus, if the new light higgs exists,
its coupling to Z boson will be suppressed [10]. The LEP measurements on the SM
Higgs boson can be used to constrain these additional scalars, but in most cases
only when their properties, especially decay profiles, are similar to SM Higgs’s
[11, 12, 13]. Furthermore, LEP/LHC constraints on the extra scalars rely on the
model details, e.g. CP properties, mass hierarchy, couplings, etc. [14]. Therefore,
it is necessary to have a more general analysis with as few assumptions as possible.
The OPAL collaboration have been searched light scalars in a model-independent
way at LEP, but the results are limited by luminosity [15].

The International Linear Collider (ILC) is an electron-positron linear collider,
with the center-of-mass energy of 250 GeV at its first stage. In Table 1, there
is a brief comparison between LEP and ILC when searching for scalars [11, 15,
16]. Comparing with LEP, ILC has 1000 times higher luminosity, which makes
recoil mass technique available, and it can provide more observables with polarized
beams, such as angular correlations, which will help to distinguish unique signals
of the scalar production [17, 18]. Thus, ILC will be sensitive to light scalars with
a very weak interaction of Z boson using model-independent analysis.

This paper is structured as follows: Section 2 introduces the signal and back-
ground processes as well as the ILC detector concept and the detector simulation
tools; Section 3 presents the methods of data selection; Section 4 shows the exclu-
sion limits for hZZ coupling; Section 5 concludes the paper.

2 Event Generation and Detector Simulation

2.1 Signal and background processes

We consider here the production of a light higgs boson h in association with a Z
boson where the Z boson decays to a muon pair. The µµh signal Monte Carlo
(MC) samples have been generated using the Whizard 1.95 event generator [19],
at a center-of-mass energy of 250 GeV, for 100% left-handed and right-handed
beam polarization configurations. Five benchmark points are chosen for the signal
MC samples, Mh = 30, 50, 70, 90, 115 GeV. The higgs decay branching ratios are
assumed to be the same as the 125 GeV SM Higgs boson, but no use would be
made of this fact.

Benefit from the high luminosity at the ILC, the higgs mass can be measured
by the recoil technique. Figure 1 shows the recoil mass distributions (Mrec) for
different higgs masses, where the peaks of recoil mass distributions are very sharp
for each higgs mass, which can be used to distinguish the signal and background
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LEP ILC
√
s

LEP1: 91.2 GeV
LEP2: 189 to 209 GeV

250 GeV

beam polarization ×
√

integrated luminosity

traditional method:

2461 pb−1 for
√
s ≥ 189 GeV

536 pb−1 for
√
s ≥ 206 GeV

recoil method:

115.4 pb−1at LEP1

662.4 pb−1at LEP2

2000 fb−1

search channel

traditional method:
2b2q,2b2ν,2b2l, ττqq

recoil method:
model independent

model independent

experiment ingredient

traditional method:
b-tagging

recoil method:
recoil mass

recoil mass
angle correlation

momentum resolution

Table 1: Comparing LEP and ILC characteristics when searching scalars. The
traditional method for discriminating signal and background at LEP is identifying
the decay modes of the higgs bosons [11]. The recoil method at LEP refer to the
analysis with recoil technique by the OPAL collaboration at LEP [15].

clearly.
As backgrounds, we use the MC samples which have been generated as the

context of ILC DBD [20], which are generated at tree level and grouped by lepton
numbers in the final state as follows:

• 2-fermion leptonic (2fl), main channel: e+e− → Z/γ∗ → l+l−/νν.

• 4-fermion leptonic (4fl), main channel: e+e− → ZZ/WW → 4l.

• 4-fermion semi-leptonic (4fsl), main channel: e+e− → ZZ/WW → 2l2q/2ν2q.

• 4(2)-fermion hadronic (4fh / 2fh), main channel: e+e− → ZZ/WW → 4q
or e+e− → Z → 2q. These events are almost all rejected when identifying
isolated muon pairs.

Bremsstrahlung and initial state radiation (ISR) are explicitly taken into ac-
count for all events. Pythia 6.4 is used for the parton shower and hadroniza-
tion [21]. The MC samples are reweighted to the polarization of P (e−, e+) =
(−80%, +30%), and an integrated luminosity of 2000 fb−1.
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Figure 1: The recoil mass distribution of the signal for different higgs masses,
when integrated luminosity is 2000 fb−1, P (e−, e+) = (−80%,+30%), and

√
s =

250 GeV.

2.2 Detector simulation

The generated events have been simulated with the full Geant4-based [22] simu-
lation of the ILD detector concept [16], more specifically the ILD o1 v05 detector
modle in mokka [23]. The simulated events have been reconstructed with the
standard tools in ILCSoft v01-16 [24]. The ILD detector is designed for optimal
particle-flow performance [25]. It has a three double-layers of silicon pixel ver-
tex detector, a hybrid tracking system, which is realized with a time projection
chamber and a combination of silicon tracking, and a calorimeter system. These
systems are surrounded by a solenoid producing a 3.5 T magnetic field, and an
iron flux return yoke. Event reconstruction has been performed using the Pan-
doraPFA algorithm [26] to reconstruct charged particle tracks and calorimeter
clusters within the Marlin framework [27]. The beam crossing angle of 14 mrad
has been also taken into account [16].

3 Analysis

In this section, we describe the analysis strategy following the cross section mea-
surement of the SM Higgs boson at the ILC [18]. The signal is selected by firstly
identifying a pair of isolated and oppositely charged muons. Then final state ra-
diation (FSR) and bremsstrahlung photons are recovered. Finally, background
events are rejected with several kinematic cuts.

3.1 Selection of the best muon pair

Isolated muons are identified with the following criteria.

• Muons are required to have sufficient track momentum: ptrack > 5 GeV,
where ptrack is the measured track momentum.

4



• Muon ionization is minimal when passing the ECAL and HCAL:
ECAL,tot/ptrack < 0.3, Eyoke > 1.2 GeV, where ECAL,tot and Eyoke is the energy
deposit in ECAL plus HCAL and inside the muon detector.

• Suppression of the muons from τ decay or b/c quark jets by requiring the
uncertainties of d0 and z0, |d0/δd0| < 5, |z0/δz0| < 5, where d0 and z0 are
the impact parameters in the transverse and longitudinal direction and δd0
and δz0 are their uncertainties.

Then a multi-variate double cone method is used for further identifying isolated
muons, with MVA cut > 0.7. All these are realized with the Marlin [27] Isolat-
edLeptonTagging [28] processor.

For the signal, at least one pair of isolated oppositely charged muons is selected.
However, there may be more muons in the events, for example, the muons produced
in the higgs decay process h→ WW ∗, h→ ZZ∗. In order to find the correct muon
pair, which produces from the Z boson decay in the higgsstrahlung process, the
invariant mass Mµ+µ− of the correct muon pair should be close to the Z boson
mass MZ=91.187 GeV. Meanwhile, with the recoil technique, the recoil mass of
the correct muon pair system can be calculated from Eq. (1). It should be close
to higgs boson mass Mh = 30, 50, 70, 90, 115 GeV, respectively, for each higgs
mass benchmark point in this study:

M2
rec = (

√
s− Eµ+µ−)2 − |~pµ+µ−|2. (1)

Thus the correct muon pair candidate is selected with the following criteria:
First, the basic criteria |Mµ+µ− −MZ | < 40 GeV is applied. Then the muon pair
should minimize the following χ2 function:

χ2(Mµ+µ− ,Mrec) =
(Mµ+µ− −MZ)2

σ2
Mµ+µ−

+
(Mrec −Mh)

2

σ2
Mrec

. (2)

where σMµ+µ−
and σMrec are determined by a Gaussian fit to the distributions of

Mµ+µ− and Mrec with the generator level MC samples.
After identifying the best muon pair, the bremsstrahlung and FSR photons

from the muons are recovered to the muons. A photon is identified as a FSR
or bremsstrahlung photon when its cosine of the polar angle with respect to the
isolated muons exceeds 0.99. Then the four momentum of the photon is combined
with that muon.

3.2 Background rejection

Background events are rejected by considering kinematic variables as described
below, while the specific cut values are adjusted for each higgs mass.

• Since Mµ+µ− should be close to the Z boson mass, a criterion is imposed as
Mµ+µ− ∈ [73, 120] GeV for each higgs mass. Figure 2 compares the Mµ+µ−

distribution of signal and background processes when Mh = 50 GeV.
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Figure 2: Invariant mass distribution of muon pair system for signal Mh = 50 GeV
and backgrounds.

• The transverse momentum of the muon pair system P µ+µ−

T in the 2fl channel
tends to have very small values, in contrast to the signal, which should have
a peak at larger values which is determined by kinematics. This motivates

P µ+µ−

T > 10 GeV. In addition, an upper limit is also needed to reduce other
backgrounds with large transverse momentum, mainly the events from 2fl
processes. In order to maximize the sensitivity, the upper limit of P µ+µ−

T for

each higgs mass benchmark point is chosen as the maximum P µ+µ−

T value in

the region |M i
h−Mbenchmark

h | < 10 GeV . The maximum P µ+µ−

T is calculated

as a function of the higgs mass, as shown in Figure 3 (a), and the P µ+µ−

T

uplimit cuts are shown in Table 2. When Mh < 50 GeV, the maximum

P µ+µ−

T cut is not necessary. As an example, the Figure 3 (b) compares

the P µ+µ−

T distribution of the signal and major background processes when
Mh = 50 GeV.

(a) (b)

Figure 3: (a) Maximum value for transverse momentum of muon pair system as a
function of higgs mass; (b) transverse momentum distribution of muon pair system
for Mh = 50 GeV.
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Mh (GeV) 30 50 70 90 115

Max Pµ
+µ−

T cut (GeV) 120 115 110 100 90

Table 2: Transverse momentum uplimits of muon pair system for different higgs
masses.

• The 2fl processes contain a large number of ISR photons. If photons es-
cape through the beam pipe, they contribute to the missing momentum in
longitudinal direction. Thus, the cut for cos(θmis) < 0.98 can reject many
2fl background events. However, when the higgs mass is small, more ISR
photons will escape from the detector. Thus, the |cos(θmis)| < 0.98 cut is
applied only for Mh > 50 GeV.

• The signatures of the ZZ background with one Z boson decay to a muon pair
are harder to distinguish from the signal. Therefore, a multi-variate analy-
sis (MVA) based on the Gradient Boosted Decision Tree (BDTG) method
[29], which is included in TMVA package [30] in ROOT [31], is used for fur-
ther background rejection. The input variables for the BDTG are cos(θZ),
cos(θµ−µ), cos(θtrack+), cos(θtrack−) and Mµ+µ− . Here, θZ is the polar angle
of the Z boson, θµ−µ is the angle between the muons, and θtrack+/− is the
polar angle of µ+/µ− track. Figure 4 shows distribution of these variables
for Mh = 50 GeV. The BDTG is trained by using half of simulated signal
and background events. Then the BDTG response is calculated with the
other half of the events. In most Mh cases, there are no obvious changes in
final sensitivity for BDTG cuts between (-0.3, 0.3). The BDTG cut is chosen
to be larger than 0 for all higgs masses. Figure 5 shows as an example the
BDTG response for Mh = 50 GeV.

• The unique characteristic of the signal is the peak of the recoil mass close to
the higgs mass. This motivates the cut [(Mh − 20), 160] GeV. In Figure 6,
taking Mh = 50 GeV for example, it shows the recoil mass distribution for
signal and backgrounds.

According to the recoil mass distribution, the main backgrounds are distin-
guishing for different higgs boson masses. The signal-to-background ratio is more
clear in 125 GeV > Mh > MZ and MZ > Mh > 50 GeV regions, because no back-
ground processes have the same feature with the signal. While in the Mh ∼ MZ

region, the ZZ process with one Z boson decaying to muon pair is an irreducible
background; and in Mh < 50 GeV region, the 2fl background e+e− → Z → µ+µ−

with energetic ISR photon is overwhelming the signal.

4 Results

The number of remaining signal and background is given in Table 3, also the signal
efficiency and significance after all cuts for different higgs masses are given. Note
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Figure 4: Example distributions of the variables cos(θZ), cos(θµ−µ), cos(θtrack+)
and cos(θtrack−) for Mh = 50 GeV, which is used for the BDTG training input
variables.

that the significance is defined as S√
S+B

, and S = κ2hZZ×σ
Mh
hµµ×

∫
Ldt, where κhZZ =

1. The cross section σMh
hµµ increases when higgs mass becomes small due to kine-

matics, which leads to a higher significance.
The general likelihood statistic method is applied for calculating 2σ expected

exclusion limits on the coupling κhZZ with a bin-by-bin comparison between
the signal and background recoil mass histograms. Two hypotheses are pro-
vided, the background-only hypothesis which assumes no new higgs in the in-
vestigated mass range, while the signal-plus-background hypothesis which as-
sumes the new higgs is produced in the mass range. Then a global test-statistic
X(Mh) = L(s(Mh))/L(0) is constructed to discriminate signal and background.
The distribution of X(Mh) are normalized to become probability density function,
which integrate to be the confidence levels CLb(Mh) and CLs+b(Mh). The ratio
CLs(Mh) = CLs+b(Mh)/CLb(Mh) is used as final confidence level.

Finally, the 95% confidence level upper bounds on κhZZ (κ95hZZ) is calculated
for five higgs mass benchmark points, which is shown in Figure 7 with the black
points. Comparing the κ95hZZ in Mh ∼MZ and 40 GeV > Mh regions, the coupling
magnitudes reach the valley bottom in 125 GeV > Mh > MZ and MZ > Mh >
40 GeV regions.

Figure 7 also shows the results in LEP for comparison. The red line is κ95hZZ
measured at LEP by combining the data of the four LEP collaborations, ALEPH,
DELPHI, L3 and OPAL [11]. In each of the four LEP experiments, the data
analysis is done with traditional methods, i.e. identifying the decay modes of the
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Figure 5: The distribution of the BDTG response for signal and background for
Mh = 50 GeV.

Figure 6: The recoil mass distribution of the signal and background for Mh =
50 GeV.

higgs bosons in the discrimination between signal and background. The green line
presented κ95hZZ obtained with the recoil technique by OPAL Collaboration [15] at
LEP. In this search, the scalar masses have been measured down to the lowest
generated signal mass of 1 keV, which is the only model-independent higgs search
at the LEP due to limited luminosity. The κ95hZZ is independent of the decay modes
of the higgs boson, which is κ95hZZ < 1 when Mh < 81 GeV. When extrapolating
these results to the ILC with

√
s = 250 GeV, P (e−, e+) = (−80%, +30%) and∫

Ldt = 2000 fb−1, the κ95hZZ is estimated to be [0.055 − 0.071] [32]. These ex-
trapolated exclusion limits are about a half of the values given in this analysis,
especially in the low mass region. The main reason is that the OPAL analysis has
been split into visible and invisible decay modes of the higgs boson. We will apply
a similar strategy in further studies.
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Mh( GeV ) light higgs 4fl 4fsl 2fl total bk
cut

efficiency
significance

115 17420 61034 53869 13878 128781 0.67 45.56
90 22198 63211 74563 18514 156288 0.59 52.54
70 26841 51672 60358 37167 149196 0.57 63.97
50 30494 46128 54373 80074 180575 0.54 66.37
30 33844 51207 55743 213184 320134 0.49 56.88

Table 3: The number of events left after all kinematic cuts for P (e−, e+) =
(−80%, +30%),

∫
Ldt = 2000 fb−1 and

√
s = 250 GeV. Also given are the

efficiency and signal significance (defined as significance = S√
S+B

, and S =

κ2hZZ × σ
Mh
hµµ ×

∫
Ldt, where κhZZ = 1).

5 Conclusions

Many BSM models favor light scalars. By applying the recoil technique, the
potential of the ILC to search for scalars has been investigated at

√
s = 250 GeV,

with the full simulation of the ILD detector concept. We have optimized the
methods of signal selection and background rejection to be independent of the
scalar decay modes. Preliminary 2 σ expected exclusion limits for scale facter
κ95hZZ of the hZZ coupling are shown for five scalar mass benchmark points. The
analysis shows two irreducable backgrounds affect the final results, two fermion
backgrounds will be dominant in the low higgs mass region, while the ZZ process
with one Z boson decays to muon pair is irreducible when Mh is close to Z boson
mass. In future, we plan to split the decay mode of higgs boson into visible and
invisible to improve the background rejection and extend our analysis to more
mass points and check the model independency for each higgs decay modes.
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Figure 7: The 2σ exclusion limits for the coupling κhZZ for different higgs
masses. The black points are the results at ILC with polarization P (e−, e+) =
(−80%, +30%),

∫
Ldt = 2000 fb−1 and

√
s = 250 GeV. The green line is the

results with recoil technique at LEP, while the red line use traditional methods.
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