

Sergey Suvorov

INR RAS, CEA Saclay

21 December 2017

INTRODUCTION

Motivation:

- resistive foil affect the charge collection in TPC
- need to investigate PID resolution

Samples:

• ILC-TPC data in DESY with 5 GeV/c electron flux

Method:

- 1. Took ILC-TPC 5 $GeV/c e^-$ data
- 2. Define the simple selection
- 3. Use the same calibration as for T2K TPCs
- 4. Extract the PID resolution
- 5. Study the influence of different setup params

ILC-TPC OVERVIEW

- 5 FEMs in the cylindrical module
- each FEM 24 rows x 72 columns

PID STUDY

- Perform the common method of energy truncation:
 - don't use extremely high values of deposited charge
- Method:
 - 1. For each pad take maximum charge from ADC (C_{pad})
 - 2. Sum up pads in a row to make a cluster ($C_{cluster}$)
 - 3. For each track sort $C_{cluster}$ in increasing order (N clusters per track)
 - 4. Take αN first clusters. $0.4 < \alpha < 1$
 - 5. Truncated mean energy per cluster

$$C_T = \frac{1}{\alpha N} \sum_{i}^{\alpha N} C_{cluster,i}$$

6. Vary α to reach best resolution

ILC-TPC SAMPLES

- Data 2014
 - middle module is extremely stable
 - other modules show significant degradation in time
 - <u>strategy</u>: make pseudo-long track from 8 different tracks crossing the middle module

- Data 2015
 - long tracks along all three modules can be used
 - not all the pads can be used
 - strategy: extract dead pads from the study

ROW BY ROW CALIBRATION

- For scan over Z beam goes over ~same columns
- For every row expect ~same amount of charge
- For each row plot the cluster charge distribution

e.g. distribution of C_T for FEM0 row 7

- Fit with asymmetric Gaussian → extract maximum (most probable value)
- Make C_T equal for all rows

ROW BY ROW CALIBRATION

- Example of the 2014 data with B = 0
- 1st and last row are excluded from all PID studies

SIMPLE EVENT SELECTION

- Design the simple selection:
- For first look PID study need:
 - 1. one track per FEM
 - 2. long enough track
- Selection:
 - 1. Look at maximum gap between hited pads in a row
 - 2. All rows except corrupted are hited

PID RESOLUTION WITH B = 0

• First check: 1 module 22 rows x 7 mm

w/o calibration

w/ calibration

 $\mathbf{B} = \mathbf{0}$

E = 140 V/cm

Fitting only upper 70% of histo, to avoid bias because of the tail

PID RESOLUTION WITH B = 0

- Dependence on drift distance study
- No significant dependencies observed

PID RESOLUTION WITH B = 1 T

- With magnetic field charge per row is ~same even w/o callibration
- Magnetic field slightly improve PID resolution (E = 230 V/cm)

21.12.17

PID RESOLUTION WITH B = 1 T

- Make pseudo-long track with 8 different tracks
- 8 x 22 rows x 7 mm = 1232 mm

For 1232 mm expect 6% dE/dx resolution

0

10

Data samples took during 2015

Some corrupted pads were observed \rightarrow exclude them from PID study

40

60

70

20

30

Cross check of the dead pads with the variation of the beam position

×10³

ENERGY RESOLUTION

- Apply multi FEM selection (one long track across 3 modules)
- Vary α to reach the best resolution
- Common value is $0.7 \rightarrow$ still make sense
- Use 20+19+21=60 clusters, 42.5 cm

• Comparing to T2K vertical 72 clusters 80 cm: Approximating our result $-6.48 \pm 0.07\%$ T2K value $-5.6 \pm 0.4\%$

- 8.95 ± 0.09 %

SUMMARY

- ILC-TPC $5 GeV/c e^-$ samples were be used for dE/dx estimation (2015 and 2015 samples)
- Charge per row calibration:
 - exclude rows with unreliable pads
 - amount of charge per row set equal with calibration
- Selections for 1 FEM and for multi-FEM track are developed
- The first estimation of the PID resolution was done:
 - for $8 \ge 22$ rows ≥ 7 mm = 1232 mm expect ~6% dE/dx resolution
 - resolution is comparable to T2K TPC w/o resistive foil
- Study the dependence of the resolution on the drift distance, energy, peaking time, field was performed:
 - no dependence on the drift distance is observed
 - 230 V/m field is better to 140 V/m

17

DEPENDENCE ON PEAKING TIME AND Efield

60 clusters 42.5 cm

DEPENDENCE ON DRIFT DISTANCE & ENERGY

- 2015 samples
- Should study the effect of drift distance and e^- energy
- Almost no significant changes of the dE/dx resolution

MULTI FEM SELECTION

 dE/dx resolution depends on distance → need to study deposited charge in all FEMs

Simple selection:	49 000 events
1. FEM5 contain 1 long track ($N_{row} = 21$, $Sep_{max} < 2$)	36074
2. FEM 3 1 long track, FEM 2 or 4 low activity ($N_{row} < 5$)	32326
3. 1 long track in FEM0. No activity in FEM1.	30678
 Track doesn't touch left/right border of any FEM 	30254
5. Horizontal distance between track start/end at FEMs $< 5 \text{ mm}$	27386

