# Particle Physics Program in North America

Asian Linear Collider Workshop 2018 Fukuoka, Japan; May 28, 2018

> Hugh Montgomery Jefferson Lab USA

# Acknowledgements

The US segment of this talk was largely taken from a talk by Andy Lankford, the outgoing Chair of the High Energy Physics Advisory Panel to the US DOE Office of High Energy Physics, to the US-Japan collaboration meeting in April 2018.

The Canadian segment of the talk is based on information provided my Mike Roney, Institute of Particle Physics Director, and Jon Bagger, TRIUMF Director

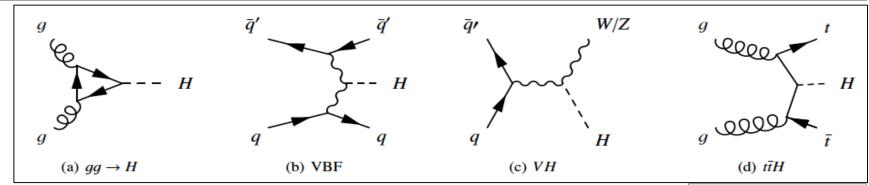


*"Pursue the most important opportunities wherever they are, and host unique, world-class facilities that engage the global scientific community."* 

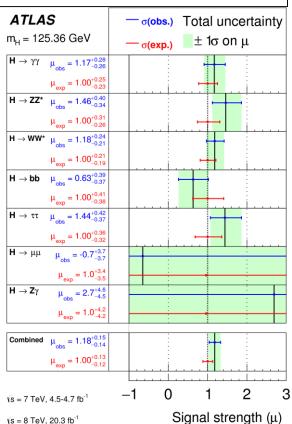
U.S. HEP program is guided by the 10-year strategic plan of 2014 P5 report:



"The United States and major players in other regions can together address the full breadth of the field's most urgent scientific questions if each hosts a unique world-class facility at home and partners in highpriority facilities hosted elsewhere."




Five topics that should drive U.S. HEP program for next 10 years:


- Use the Higgs boson as a new tool for discovery.
- Pursue the physics associated with neutrino mass.
- Identify the new physics of dark matter.
- Understand cosmic acceleration: dark energy and inflation.
- Explore the unknown: new particles, interactions, and physical principles.

P5 identified the highest priority projects for a balanced program that addresses these science drivers in constrained budget scenarios.

## **Solution** Use the Higgs boson as a new tool for discovery.



- LHC and its upgrades are the only means to produce and characterize the Higgs for the next decade or longer.
  - Precision measurements of Higgs properties leading to any deviations at the few %-level.
  - Access to rare processes, H decay to μμ.
- ILC (or other Higgs factory) would eventually allow measurements of higher precision.
- A very high energy proton-proton collider would later allow other improved measurements, such as Higgs self-coupling.



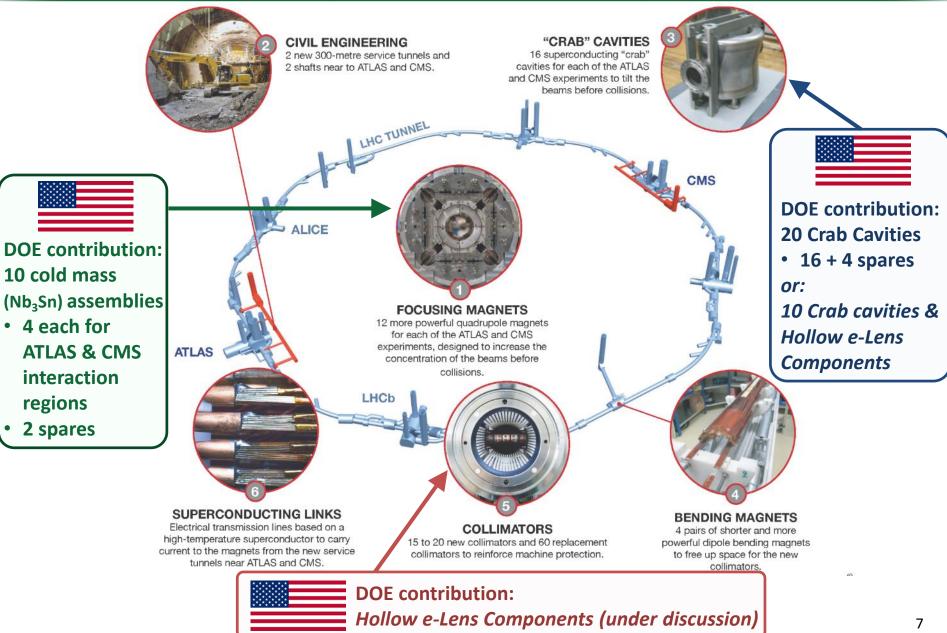
# The U.S., the LHC and the LHC upgrades

LHC has been one of the largest investments of U.S. in HEP, ever.

- LHC accelerator (DOE)
- ATLAS (DOE+NSF), CMS (DOE+NSF), LHCb (NSF), ALICE (DOE NP)

U.S. is single largest collaborating nation on both ATLAS & CMS.

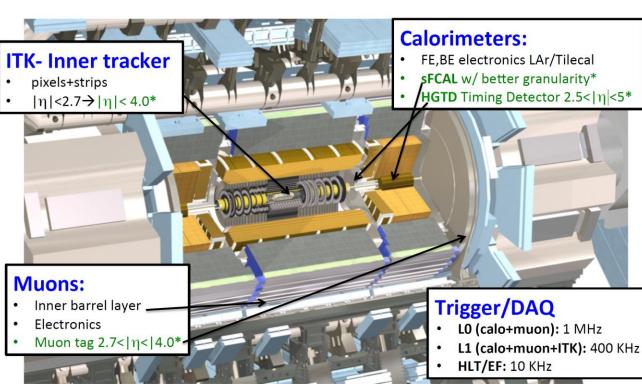
• US-ATLAS: ~19% of ATLAS; US-CMS: ~27% of CMS


## U.S. investment continues for Phase-I & HL-LHC upgrades.

- DOE & NSF: Phase-I ATLAS & CMS detector upgrades
  - Now nearing completion. Some components already installed.
- DOE: HL-LHC Accelerator Upgrade Project
  - CD-1/3a Oct 2017; CD-2 ~ early 2019
- DOE & NSF: HL-LHC [Phase-II] ATLAS & CMS upgrades
  - CD-1 ~June-July 2018; NSF PDR's held.

# May 2017: Signed DOE-CERN addenda to U.S.-CERN Int'l. Cooperative Agreement and Protocols signed in 2015.

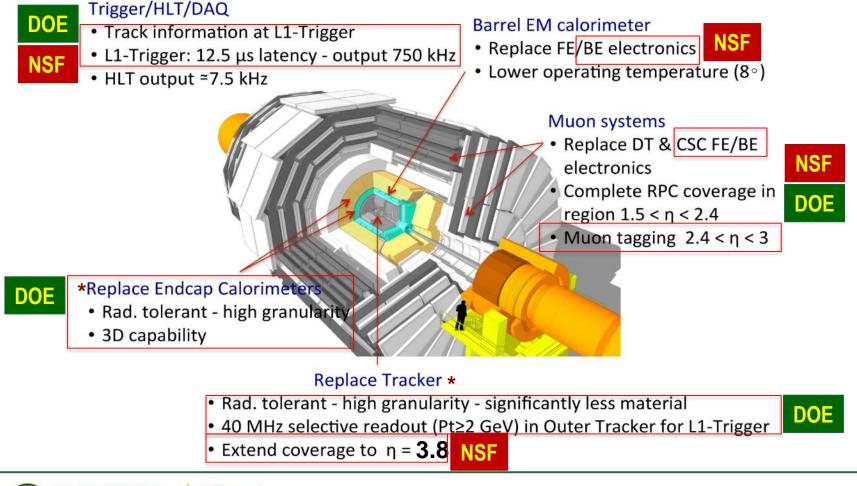
- DOE contributions to HL-LHC accelerator & detector upgrades
- CERN's contribution to U.S.-hosted neutrino program


## HL-LHC Accelerator Upgrades: Enabling U.S. Science Participation



# **ATLAS HL-LHC Upgrade**

- Similarly, U.S. ATLAS is defining the scope of its contributions to HL-LHC by leveraging interests and experience of U.S. groups, coordinating with international ATLAS
- DOE Scope:
  - Barrel Inner Tracker (pixel & strip detector)
  - LAr Calorimeter front-end analog chip development
  - DAQ hardware (data flow elements)
- NSF Scope:
  - 'Triggering' at high luminosities
  - Readout electronics for LAr, Tile, Muons





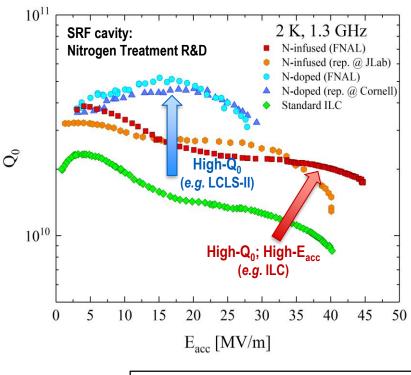

\* Large forward rapidities, as described in the 2015 ATLAS HL-LHC scoping document (for the reference 275 MCHF CORE total cost scenario)

# CMS HL-LHC Upgrade

- DOE and U.S. National Science Foundation coordinating U.S. contributions with CERN and international partners on CMS
- Scope of the U.S. deliverables leverages expertise by U.S. scientists



= U.S. contributions to CMS HL-LHC Upgrade Scope




**JILC:** Status in the U.S.

While awaiting a decision by the Government of Japan to host the ILC, the U.S. continues R&D efforts, focusing on areas of cost reduction for the accelerator (*e.g.* SRF cavities, gradient, *Q*-factor).

R&D:

- U.S. has invested heavily in ILC and detector R&D in past years, particularly Superconducting RF.
- Present R&D program focuses on cost reduction for SRF (gradient, Q<sub>0</sub>).
- Builds upon past investment and upon Fermilab & Jefferson Lab experience in providing SRF for the LCLS-II light source at SLAC
- Other ILC R&D efforts, *e.g.* positron source, detectors, are very modest in current budget situation.



See A. Grassellino presentation.



# Silicon Detector

**Tracking System** 

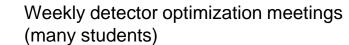
SLAC, U.Oregon, UC Davis, ANL, UNM, Yale, (Bristol)

#### Electro-magnetic calorimeter

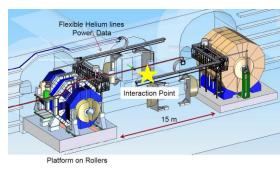
SLAC, U. Oregon

#### Hadronic calorimeter

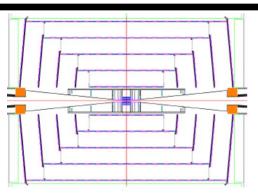
UTA, SLAC, ANL

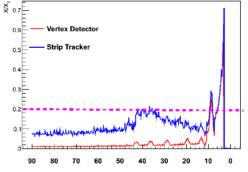

Muon system

Forward region UCSC, SLAC


MDI/Installation

SLAC, (DESY)


Computing/Software/Physics SLAC(DESY), PNNL, (Glasgow), UO, UTA, ANL




- Design options
- New (DD4HEP) simulation
- Physics studies
- Cost estimation/reduction
- Mechanical/electronics engineering to support conceptual design



Spokes Andy White, UTA Marcel Stanitzki, DESY



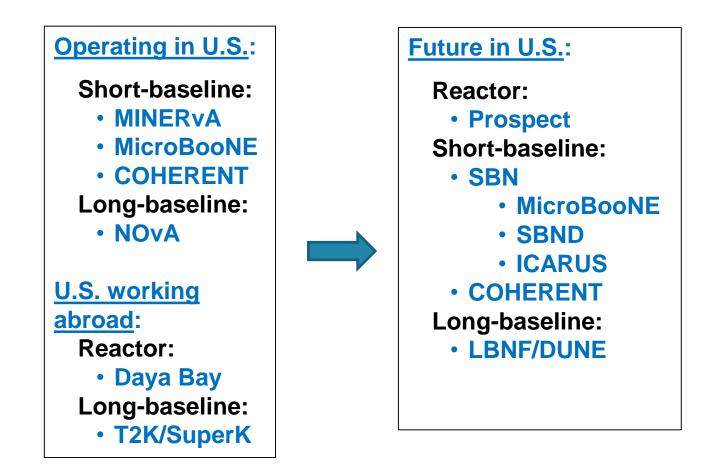




# **International Large Detector**



- Letter of Intent published in 2010. Includes 12 US and 5 Canadian institutions.
- Since 2015, ILD has transitioned to a more formal management structure. Currently 71 institutions are members of the Institute Assembly including 7 from the US and Canada.
  Carleton, Indiana, Kansas, McGill, NIU, Princeton, Victoria
- ILD's current effort is focused on preparing the groundwork for a real proposal and understanding better the detector optimization and performance.
- Pending the green-light, securing funding for ILC targeted work in North America has been difficult. Some limited funding possibilities with base-grant funding and now with US-Japan. Canada similar.
- Activities:


McGill, NIU – participation in CALICE R&D collaboration Carleton, Victoria, Cornell – contributions to LC-TPC R&D collaboration Kansas - physics and detector studies, ILD management (Wilson)

• Contacts in North America: Alain Bellerive (Canada) and Graham Wilson (US).

## **CLIC Detector**

ANL, U. Michigan, and Pontificia Universidad Catolica, Santiago, Chile

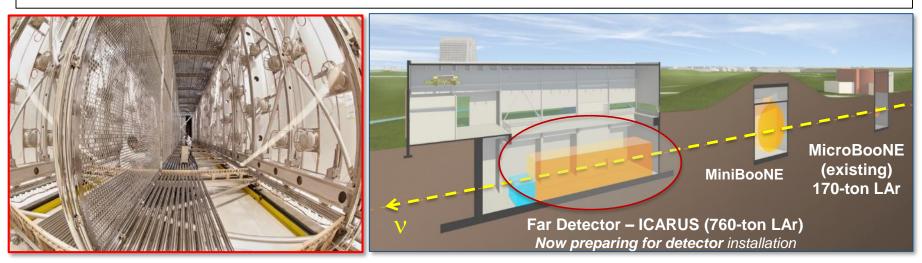
Pursue the physics associated with neutrino mass.



P5: "In collaboration with international partners, develop a coherent shortand long-baseline neutrino program hosted at Fermilab."

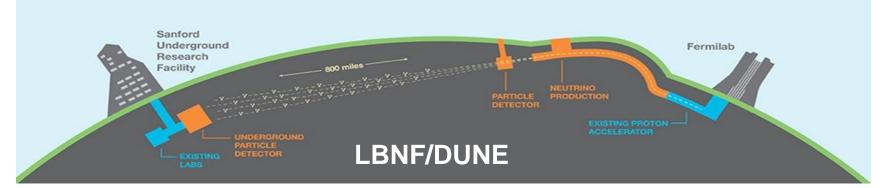
ALCW Fukuoka 2018




## **Short-Baseline Neutrino Program**

### Two goals:

- Resolve experimental anomalies in measured v-spectrum, including search for sterile neutrinos.
- Demonstrate the liquid argon TPC detector technology for DUNE.


#### **Three detectors:**

- ICARUS brought from Gran Sasso, Italy via refurbishment at CERN. Now at FNAL.
- SBND Short-Baseline Near Detector
- MicroBooNE operating



# Long-Baseline Neutrino Program – LBNF/DUNE

## Long-Baseline Neutrino Facility / Deep Underground Neutrino Expt.

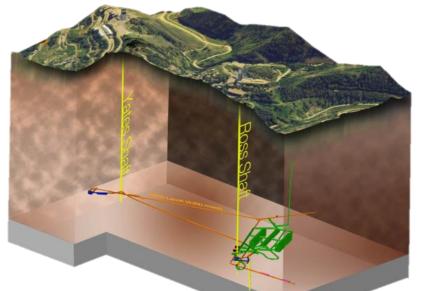


- Identified by P5 as the highest priority large project in its time frame.
- Centerpiece of a U.S.-hosted, international neutrino program.
- The 1<sup>st</sup> international science facility hosted in the U.S.

1065 collab.177 inst.31 nations



UK-U.S. S&T Agreement 20 Sept 2017


Some recent agreements

US DOE – India DAE S&T Agreement for neutrino physics 16 April 2018



ALCW Fukuoka 2018





Sanford Underground Research Facility





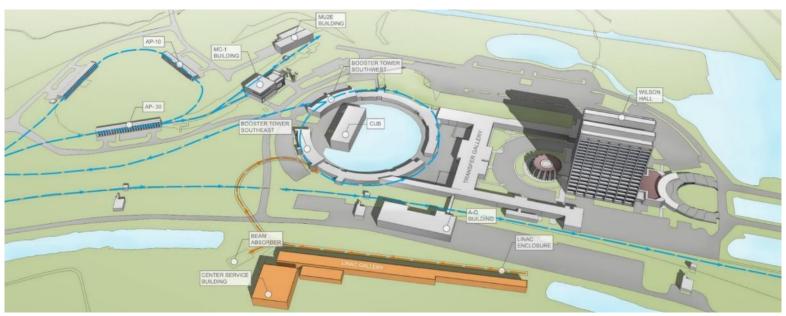
#### Anode Plane Assembly

See F. Cavanna presentation.

| International Project Milestones    | Date |
|-------------------------------------|------|
| Start Main Cavern Excavation        | 2019 |
| Start Detector #1 Installation      | 2022 |
| Neutrino beam on with two detectors | 2026 |

ALCW Fukuoka 2018

# Proton Improvement Plan II (PIP-II)


#### Goal - 1.2 MW proton beam power DUNE in 2026

Will also support other research goals by providing increased beam power and high reliability to future Fermilab experiments.

Replace existing 50-year-old linac with a high-power, 800-MeV SRF linac. Based on LCLS-II experience (and ILC R&D)

Being built with international partners, incl. India, UK, Italy, France.

CD-1 planned for June 2018.

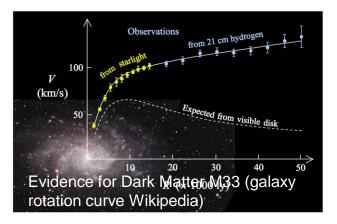


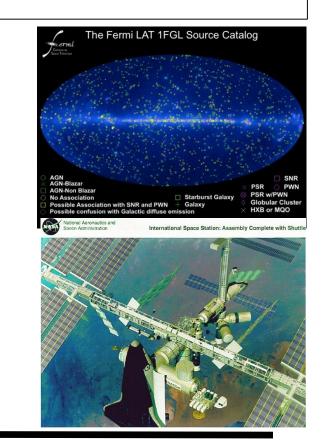
### Ultimate goal for upgrade of proton complex is >2 MW to LBNF. (PIP-III?)

ALCW Fukuoka 2018

## Identify the new physics of dark matter.

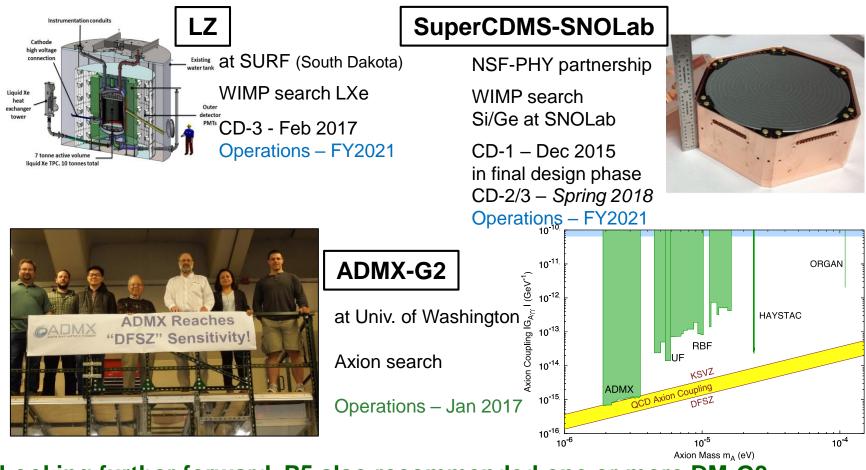
## P5: "It is imperative to search for dark matter along every feasible avenue."


4 complementary experimental approaches, each providing essential clues:


- direct detection,
- indirect detection,
- observation of large-scale astrophysical effects,
- dark matter production at accelerators.

#### **Indirect detection:**

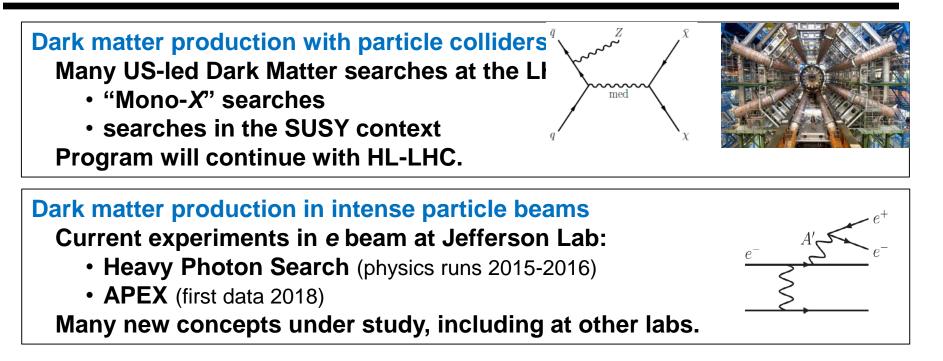
- Research continuing with Fermi-LAT & AMS-02.
- HAWC sensitive to very heavy DM particles.
- DOE has no new initiatives planned.


#### Large-scale astrophysical effects:





## Direct detection searches for dark matter


DOE completed support for operations of DM-Generation 1 experiments in FY16/17. ADMX-II, LUX, CDMS-Soudan, DarkSide-50, COUPP/PICO, DAMIC DM-G2 program: 3 complementary experiments



# Looking further forward, P5 also recommended one or more DM-G3 experiments.

ALCW Fukuoka 2018

## Dark matter production at accelerators



Future planning via Cosmic Visions Dark Matter community group. New concepts, for all experimental techniques, were explored at a broad workshop on Dark Matter in 2017.

Whitepaper on most important scientific opportunities: U.S. Cosmic Visions: New Ideas in Dark Matter 2017: Community Report arXiv:1707.04591 [hep-ph]

## Understand cosmic acceleration: dark energy and inflation.

Dark energy: complementary imaging & spectroscopic surveys

## DES Dark Energy Survey



## eBOSS

Extended Baryon Oscillation Spectroscopic Survey

Now last year of operations Producing excellent results

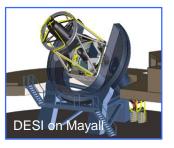
**DOE & NSF-AST** Producing excellent results Now in 5/6 yrs operations





#### Large Synoptic Survey Telescope DOE & NSF-AST

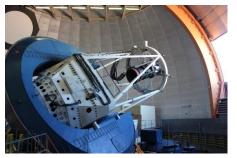


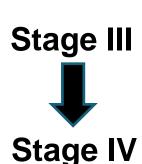


NSF MREFC - Aug 2014; CD-3 - Aug 2015 Operations - 2022

## DESI

**Dark Energy Spectroscopic Instrument** 

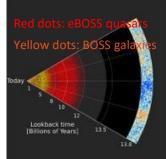
CD-3 - Jun 2016 Commissioning - 2019

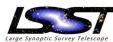



## Understand cosmic acceleration: dark energy and inflation.

Dark energy: complementary imaging & spectroscopic surveys


DES Dark Energy Survey

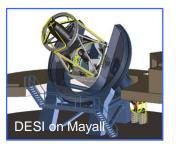





## eBOSS

Extended Baryon Oscillation Spectroscopic Survey






Large Synoptic Survey Telescope DOE & NSF-AST

### DESI Dark Energy Spectroscopic Instrument









## Inflation: Cosmic Microwave Background (CMB)



## Operating Stage 3: South Pole Telescope Operations began Feb 2017; DOE-NSF partnership Research also on several other CMB exp'ts

## Planning for next generation:

## CMB Stage 4 (CMB-S4)

DOE-NSF partnership

Science book – Oct 2016.

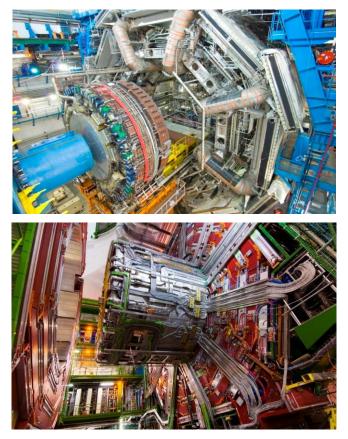
CMB-S4 Concept Definition Taskforce Report approved Oct 2017.

science goals, technical requirements, strawman concept

Note: P5 suggested international collaboration and coordination on Stage 4.



#### Explore the unknown: new particles, interactions, and physical principles.


Some approaches to exploring the unknown as outlined by P5:

- High energy colliders
- Precision physics & rare processes
  - Heavy quarks & tau leptons
  - Rare kaon decays
  - Rare muon decays and processes
  - Muon magnetic moment
  - Baryon number violation
  - Electric dipole moments
- Cosmic particles
- Low-mass particles



#### Explore the unknown: New particles, interactions, and physical principles.

High energy colliders are one of the approaches to exploring the unknown.



|                                              | cs Limits            | 8.2 T<br>9.5 |
|----------------------------------------------|----------------------|--------------|
| G <sub>KK</sub> mass<br>G <sub>KK</sub> mass | 4.1 TeV<br>1.75 TeV  |              |
| KK mass                                      | 1.6 TeV              |              |
| Z' mass                                      | 4.5 Te               | v .          |
| Z' mass                                      | 2.4 TeV              |              |
| Z' mass                                      | 1.5 TeV              |              |
| Z' mass                                      | 2.0 TeV              |              |
| W' mass                                      | 5.1                  | ieV          |
| V' mass                                      | 3.5 TeV              |              |
| V' mass                                      | 2.93 TeV             |              |
| W' mass<br>W' mass                           | 1.92 TeV<br>1.76 TeV |              |
| VV IIId55                                    | 1.70 104             |              |
| ٨                                            |                      |              |
| ٨                                            |                      |              |
| ٨                                            | 4.9 T                | eV           |
| m <sub>med</sub>                             | 1.5 TeV              |              |
| m <sub>med</sub>                             | 1.2 TeV              |              |
| M.                                           | 700 GeV              |              |
| LQ mass                                      | 1.1 TeV              |              |
| LQ mass                                      | 1.05 TeV             |              |
| LQ mass                                      | 640 GeV              |              |
| T mass                                       | 1.2 TeV              |              |
| T mass                                       | 1.16 TeV             |              |
| T mass                                       | 1.35 TeV             |              |
| B mass                                       | 700 GeV              |              |
| B mass                                       | 790 GeV              |              |
| B mass                                       | 1.25 TeV             |              |
| Q mass                                       | 690 GeV              |              |
| q* mass                                      |                      | .0 TeV       |
| q* mass                                      |                      | TeV          |
| b* mass                                      | 2.3 TeV              |              |
| b* mass                                      | 1.5 TeV              |              |
| ℓ* mass<br>ν* mass                           | 3.0 TeV<br>1.6 TeV   |              |
|                                              |                      |              |
| N <sup>0</sup> mass<br>H** mass              | 2.0 TeV              |              |
| H** mass                                     | 870 GeV              |              |
|                                              |                      |              |

**HL-LHC =>** Up to 40% larger discovery potential for new physics than that accessible prior to upgrades

ALCW Fukuoka 2018



## Explore the "unknown" thru precision measurements

- Ongoing precision experiments:
  - Collaboration with Japan on K meson, heavy quark, and τ lepton precision studies with KOTO and Belle II
- In the future: The FNAL muon program
  - Muon g-2
    - First beam in May 2017
    - First physics in 2018; BNL-size data set by summer
    - Full statistic results in 2020

#### o **Mu2e**

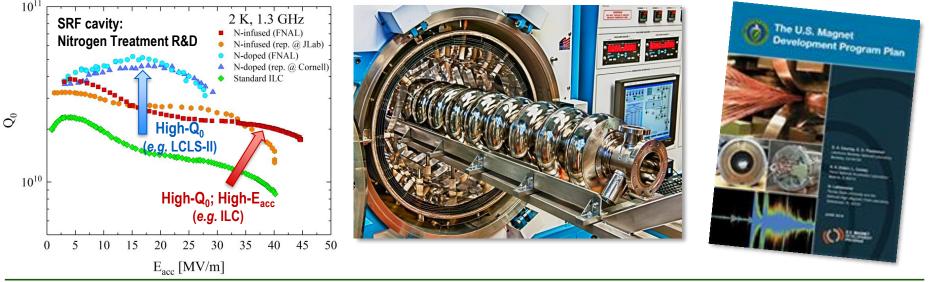
- CD-3 construction start July 2016
- First beam 2020
- Physics data 2022





Accelerator R&D roadmaps

- Recommended by 2015 HEPAP Accelerator R&D Subpanel
- Roadmaps defined by research community contain:
  - Pressing challenges to be addressed to move the field forward
  - Prioritized milestones aligned to the most compelling research
- Subject areas:
  - Radiofrequency Acceleration Technology
    - Superconducting RF, Normal Conduction RF, RF sources
  - Superconducting High Field Magnets
    - Produced the U.S. Magnet Development Program Plan
  - Advanced Accelerator Concepts
    - Laser-driven plasma wakefield acceleration (LWFA)
    - Particle-beam-driven plasma wakefield acceleration (PWFA)
    - Dielectric wakefield acceleration (DWFA)








# **Future Colliders**

- DOE has been coordinating with the international community towards the development of the next collider program
  - The U.S. looks forward to a decision this year by Japan to host the ILC as an international project
  - Global strategy for the next circular collider awaits the 2020 European Strategy Update for Particle Physics
- Interest from U.S. HEP community to pursue R&D studies for future collider options (*e.g.,* Europe/CERN Future Circular Collider or Japan-proposed ILC)
  - Current DOE efforts focused on next generation high-field magnet technology to enable higher energy future proton-proton collider
  - For ILC, current DOE efforts focused on cost reduction R&D—for e.g., nitrogen treatment in SRF accelerator cavity technology: potential for up to 10% cost reductions in 3-5 years, up to 15% in 5-10 years
- Caveat: Under any fiscal budget constraints in the Energy Frontier program, near-term priorities will aim to support the LHC program as well as R&D for the High-Luminosity LHC upgrades

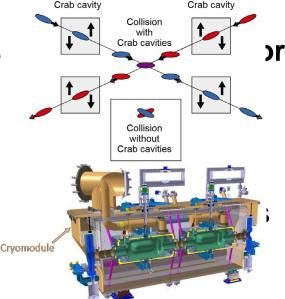




#### Subatomic Physics Long Range Plan 2017-2021

Community-driven planning exercise captures aspirations of Canadian particle and nuclear physics research communities as guide to investment decisions of funding agencies (Long Range Plan available at www.subatomicphysics.ca)

### Some Scientific Recommendation highlights:


- Provide continued support and resources to: ATLAS; T2K; TRIUMF (radioactive beams, ARIEL); SNOLAB (dark matter and 0v2β searches);
- Support strategic, smaller-scale Canadian efforts, giving breadth to the community's programme: ALPHA, JLAB and offshore rare isotope beam experiments, and IceCube.
- Support activities in potential *future* flagship endeavours having significant Canadian participation:
  - ATLAS at the High-Luminosity LHC
  - Belle II at SuperKEKB
  - Hyper-Kamiokande
  - ILD at ILC
  - Moller and SOLID at JLAB
  - nEXO at SNOLAB
  - UCN/nEDM at TRIUMF (w/ significant Japanese contributions)



## Canadian HEP community will be engaged in next generation high energy collider projects both detectors and accelerators

e.g. HL-LHC:

- ATLAS detector upgrades have federal funding
- IPP Canadian HEP community working to secure funding of cryomodules for crab (partnerships TRIUMF, FNAL, CERN...)



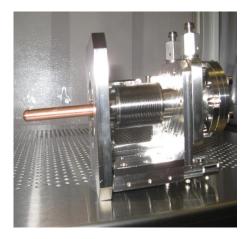
## International partnerships in all regions key to success:

- TRIUMF and KEK have offices in each others labs, joint programs/symposium series
- Long Range Plan recommends:
  - Stakeholders in Canadian government, universities, institutes, labs and industry work towards a more formal relationship between Canada and CERN.
  - Identify an office in federal government responsible for engaging with the international community in moving forward major new science initiatives.
- Canadian government now has a Chief Science Advisor IPP HEP community working with her on engagement in international projects and partnerships.

# Canadian Foundation for Innovation

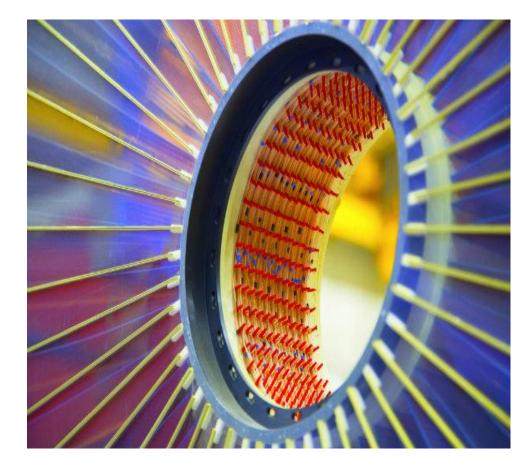
| Project                         | Lead<br>Institution | CFI<br>Request | Gate 0 | Gate 1 |
|---------------------------------|---------------------|----------------|--------|--------|
| ATLAS Upgrade / HL-<br>LHC      | Toronto             | ~\$35M         | ✓      | ✓      |
| Photodetector<br>Infrastructure | Carleton            | ~\$10M         | ✓      | ✓      |
| HyperK/PINGU                    | Toronto             | ~\$25M         | ✓      | ✓      |
| UCN/nEDM                        | Winnipeg            | ~\$12M         | ✓      | ✓      |
| MOLLER                          | Manitoba            | ~\$4M          | ✓      | ✓      |
| TIGRESS Si Tracker              | Guelph              | ~\$1M          | ✓      | ✓      |
| Muon Beamline Upgrade           | SFU                 | ~\$10M         | ✓      | ✓      |
| Isotope Harvesting              | UBC                 | ~\$10M         | ✓      | ✓      |

## Proposals aligned with Subatomic Physics Long Range Plan


ALCW Fukuoka 2018

# TRIUMF Accelerator Science

Outside projects leverage Accelerator Division core competences, help support/expand infrastructure, grow skills and build reputation


## **Recent and Ongoing Activities**

- ANURIB (VECC-India)
  - Cryomodule and target production in progress
- RISP (IBS-Korea)
  - SRF cavity testing complete
  - SRF spoke design/fabrication in progress
- LCLS-II (SLAC) SRF coupler conditioning complete
- FRIB (MSU) SRV test coupler fabrication complete
- IMP (CAS-Lanzhou) LLRF systems in progress
- RISP (IBS-Korea) LLRF test system in progress
- GANIL (France) Ti/Sa laser systems complete
- HL-LHC (CERN) Beam dynamics studies in progress
- ILC (LCC) Surface characterization studies in progress



# TRIUMF: Current Major Projects

- Three major projects
  currently underway
  - UCN: Ultra Cold Neutrons
  - ARIEL II
  - IAMI: Institute for Advanced Medical Isotopes



# **North American Particle Physics Program**

## **United States**

## The 2014 P5 Report defines the HEP strategic plan through ~2024.

- The P5 report well accepted, by the HEP community, in DOE, NSF, Congress.
- The P5 plan is still in its early years.
- DOE Perspective on future planning: not too early; not too late

The P5 strategic plan needs to be updated in time to impact the FY2025 budget, leading to the <u>notional</u> timeline:

Mid-2020: Begin process, Early 2023: Report to inform FY2025 budg

Continue accelerator R&D needed for next-generation research. Continue community activities looking to the future.

## Canada

## Sub-atomic Physics Long Range Plan 2017-2021

- TRIUMF serves as core Laboratory
- Strong, innovative internal physics and technology program
- Strong international partnerships in particle physics and accelerator science

## **INTERNATIONAL PARTNERSHIP** is integrated in both strategies