ILC new luminosity design and small beam experiments at ATF ALCWS2018 2018.5.31 K. Kubo (KEK)

Luminosity at E_{CM} =250GeV

ILC TDR is optimized for 500GeV. Luminosity at 250GeV was low

New design: Higher luminosity at 250 GeV By reduction of horizontal beam size (Increase beamstrahlung (energy loss in collision))

TDR 500GeV	TDR 250 GeV	New 250GeV
1.79 x10 ³⁴ /cm²/s	0.82	1.35

(Reported by K.Yokoya in AWLC2017)

Reduce σ_x

 By reducing horizontal emittance. 10 → 5 um. (Reduction of beta_x* will cause problems. Can be tried later.)

- Need lower emittance in Damping Rings
 - Possible with minor design change
- Disruption (strength of beam-beam force) will become large → tighter positioning tolerance
 - Cured by fast feedback

Part of parameter table

250	
5.00	
515.5	
0.51	
34.5	
0.028	
1.91	
2.62	
0.529	
1.35	
	5.00 515.5 0.51 34.5 0.028 1.91 2.62 0.529 1.35

New Parameter Set

- Half Horizontal Emittance
- Same beta*
- Luminosity $0.82 \rightarrow 1.35 E34 / cm^2/s$
- δ_{BS} 0.97 \rightarrow 2.62%
- D_y 24.5 \rightarrow 34.5
- ε_x 10 \rightarrow 5 μ m

		TDR		New
Ecm	GeV	250	500	250
N	e10	2.0	2.0	2.0
Collision frequency	Hz	5.0	5.0	5.0
Electron linac rep rate	Hz	10.0	5.0	5.0
Nb		1312	1312	1312
Bunch separation	ns	554	554	554
Beam current	mA	5.78	5.78	5.78
P _B	MW	5.3	10.5	5.3
σz	mm	0.3	0.3	0.3
σ _E /E(e-)	%	0.188	0.124	0.188
σ _E /E(e+)	%	0.15	0.07	0.15
ε _{nx}	μm	10.00	10.00	5.00
ε _{ny}	nm	35.0	35.0	35.0
electron polarization	%	80	80	80
positron polarization	%	31	22	31
β _x	mm	13.0	11.0	13.0
β _y	mm	0.41	0.48	0.41
σχ	nm	729.0	474.2	515.5
σ _y	nm	7.66	5.86	7.66
θ_x	μr	56.1	43.1	39.7
θγ	μr	18.7	12.2	18.7
Dx		0.26	0.30	0.51
Dy		24.5	24.6	34.5
Upsilon (average)		0.020	0.062	0.028
Ngamma		1.21	1.82	1.91
δ_{BS}	%	0.97	4.50	2.62
Lgeo	1.0E+34	0.374	0.751	0.529
L (simulation, waist shift)	1.0E+34	0.82	1.79	1.35

2017/6/28 AWLC, Yokoya

5

Damping Ring Design for lower ε_x

- Stronger focusing optics can make smaller horizontal emittance
- Possible problem is reduction of dynamic aperture
- There is a space to lengthen the dipoles in the arcs $3m \rightarrow -5m$
 - This (weaker bending field) will make dynamic aperture larger
- Still conservative, compare with recent light sources

Luminosity Preservation

At IP

- Small beam
- Position stability

Tested at ATF2

Cs₂Te Photocathode RF Gun

1.3 GeV S-band Electron LINAC (~70m)

Final Focus Optics, ILC and ATF2

Almost identical optics

Same magnet configuration (Same magnet names)

ILC 125 GeV ~700 m

ATF2 1.3 GeV ~30 m

⁹

How can we compare difficulties in ILC and ATF2

	TDR 500	TDR 250	New 250	ATF2
Beam energy (GeV)	250	125	125	1.3
Vertical size (nm)	5.9	7.7	7.7	37/41 (Design/measured)
beta_y* (mm)	0.48	0.41	0.41	0.1
Physical emittance (pm)	0.08	0.16	0.16	12
L*/beta_y* (~Natural chromaticity)	4100/0.48	4100/0.41	4100/0.41	1000/0.1
Energy spread (e-/e+) (%)	0.12/0.07	0.19/0.15	0.19/0.15	0.06~0.08

Difficulty in final focus. Roughly, relative difficulty can be represented by L*/beta_y* (for geometrical aberrations and chromatic aberrations)

How can we compare difficulty in ILC and ATF2

	TDR 500	TDR 250	New 250	ATF2
Beam energy (GeV)	250	125	125	1.3
Vertical size (nm)	5.9	7.7	7.7	37/41 (Design/measured)
beta_y* (mm)	0.48	0.41	0.41	0.1
Physical emittance (pm)	0.08	0.16	0.16	12
L*/beta_y* (~Natural chromaticity)	4100/0.48	4100/0.41	4100/0.41	1000/0.1
Energy spread (e-/e+) (%)	0.12/0.07	0.19/0.15	0.19/0.15	0.06~0.08

L*: Distance between final quad magnet to IP

Difficulty in final focus.

Roughly, relative difficulty can be represented by

L*/beta_y*

(for geometrical aberrations and chromatic aberrations)

How can we compare difficulty in ILC and ATF2

	TDR 500	TDR 250	New 250	ATF2	
L*/beta*					
~ Natural ch	romatic	ity			
~ (beam size in final magnet) / (beam size at IP)					
Physical emittance (pm)	0.08	0.16	0.16	12	
L*/beta* (~Natural chromaticity)	4100/0.48	4100/0.41	4100/0.41	1000/0.1	
Energy spread (e-/e+) (%)	0.12/0.07	0.19/0.15	0.19/0.15	0.06~0.08	

Difficulty in final focus. Roughly, relative difficulty can be represented by L*/beta_y* (for chromatic aberrations and geometrical aberrations)

Tolerance of normal sextupole field of QF1, QD0 (Final Doublet)

(by T.Okugi)

e tolerances of FD multipole errors for ATF2 10x1 optics is comparable to ILC.

Roughly, Tolerance of magnetic field error in New250 ~ TDR500 ~ TDR250 ~ ATF2 10x1 (usual optics) > ATF2 1x1 (original design)

ATF2 10x1 (usual optics) is good for testing ILC Final Focus

Tuning knobs for vertical beam size

5 sextupole magnets (on movers) and 4 skew-sextupole magnets

Same design for ILC and ATF2

		Corrected coupling
Linear knob	Horizontal move of sextupole magnets	уу'
	vertical move of	Ey
	sextupole magnets	x 'y
Non-linear S knob s S s r	Strength change of sextupole magnets	x 'yy '
		Eyy'
	Strength change of	xxy
	skew sextupole magnets	Exy
		EEy
		уу у

T. Okugi et al., Phys. Rev. ST-AB **17**(2014) 023501.

History of measured minimum beam size of ATF2

Achieved small beam, very close to design

Figure by T.Okugi

Study continued

- Understand Non-linear Aberrations in details
- Possibility of smaller beta_y*
- Intensity dependence (next slides)

Intensity dependence at ATF2

- Beam size depend on bunch intensity
- Small beam (~40) nm observed only at low intensity

 $(N~1x10^9)$ (ATF2 design 1x10¹⁰, ILC 2x10¹⁰)

Effect of wakefield

Reported in this workshop, ATF2 session

Beam size vs. bunch Intensity at ATF2

Assuming
$$\sigma_y^2(q) = \sigma_y^2(0) + w^2 q^2$$

as intensity dependence paramter (nm/nC or nm/1e9) Use w

Intensity scan

In recent operation, w: ~ 10 nm/1e9 (beam size growth 3.6% at N=1x10⁹) Depending on conditions

Comparison of Wakefield effect at ILC and ATF2

Assumptions

- Wakefield sources
 - At every quadrupole magnet
 - Similar structure in ILC and ATF
- Same random misalignment.

or

• Same orbit jitter relative to beam size

Estimate beam size growth relative to beam size at IP

Effect of wakefield with Random misalignment

- q : bunch charge
- W: strength of wakefield
- E: beam energy
- ε : emittance
- β : beta-function at wake source

	ILC	ATF2	Ratio of effect	
E (GeV)	125	1.3	0.01	
W (bunch length effect)	0.4	1	0.5~0.7	
Emittance (pm)	1.6	12	2.7	
$\sum \beta$ (m)	3.9E5	6.1E4	2.5	
Total			0.033~0.047	
	(Same bunch intensity)			

Effect of wakefield with Orbit distortion (orbit jitter)

$$\frac{\sqrt{\sigma^2 - \sigma_0^2}}{\sigma_0} \propto \frac{qW}{E} \sum \beta$$

	ILC	ATF2	Ratio of effect	
E (GeV)	125	1.3	0.01	
W (bunch length effect)	0.4	1	0.4~0.7	
$\sum \beta$ (m)	3.9E5	6.1E4	6.4	
Total			0.026~0.045	
	(Same bunch intensity)			

Wakefield effects at ILC and ATF2

Effect at ILC Final Focus line is factor

0.026~0.047

of effect at ATF2 for the same charge/bunch

ATF2 minimum beam size observed with

~0.1x10¹⁰ e/bunch

 \rightarrow Corresponds to 2.1~3.8x10¹⁰ e/bunch > 2.0x10¹⁰ (ILC design)

Effect at ILC: smaller than ATF2 low intensity operation

Expect further reduction at ILC.

We did not realize the significance of wakefield effects and ATF2 beam line was not carefully designed.

Luminosity Preservation

At IP

- Small beam
- Position stability

Tested at ATF2

Luminosity Sensitivity against vertical offset

Relative Luminosity reduction is larger in new design than TDR for the same offset.

D. Jean, MDI KEK Meeting 2017° 26

ILC intra-pulse Feedback

Required BPM resolution

- ~ (Kick angle at tolerated offset) x Distance
- > 10 um for offset < 0.5 nm

BPM resolution is not an issue

Kick angle vs. offset

Does not change much from TDR

Monotonical up to 200 nm offset 1 nm offset \rightarrow >20 micro-radian kick

28

Intra Pulse Feedback test at ATF2 (FONT)

ILC like beam in ATF2:

2 bunches/pulse or 3 bunches/pulse

Spacing 150 ns ~ 300 ns

FONT at ATF2 Fast Feedback demonstrated

Example: BPM A and C used to stabilize beam at BPM B

BPM resolution is dominant source of residual jitter

Summary

- New ECM 250 GeV designed for higher luminosity. (0.82 -> 1.35 (x10³⁴/cm²/s))
 - Reduce horizontal emittance (half)
- Making small beam
 - Not more difficult than TDR250 design
 - Tested at ATF2 (almost identical design)
- Position stability
 - Tighter tolerance than TDR
 - Intra pulse feedback tested at ATF2