
The SiD Detector – Status and Recent Work

Andy White

UNIVERSITY OF TEXAS 🖟 ARLINGTON

On behalf of the SiD Consortium (M. Stanitzki, A.White Spokespersons)

With thanks to SiD colleagues for materials provided!

A. White SiD ALCW2018

5/27/2018

SiD Detector

- SiD design criteria
- Status of work on subsystems (VTX, tracker, ECal, HCal, FCal)
 Emphasis on work/updates since talk at LCWS2017
- Weekly optimization study meetings many students involved!
- GOAL: be ready for a period of intensive/well-supported R&D as preparation for the writing of a full SiD Technical Design Report.
- While the SiD design has been stable for some time, we are always open to new ideas, new technologies, that could improve/maintain performance while reducing cost.

The SiD Design Rationale

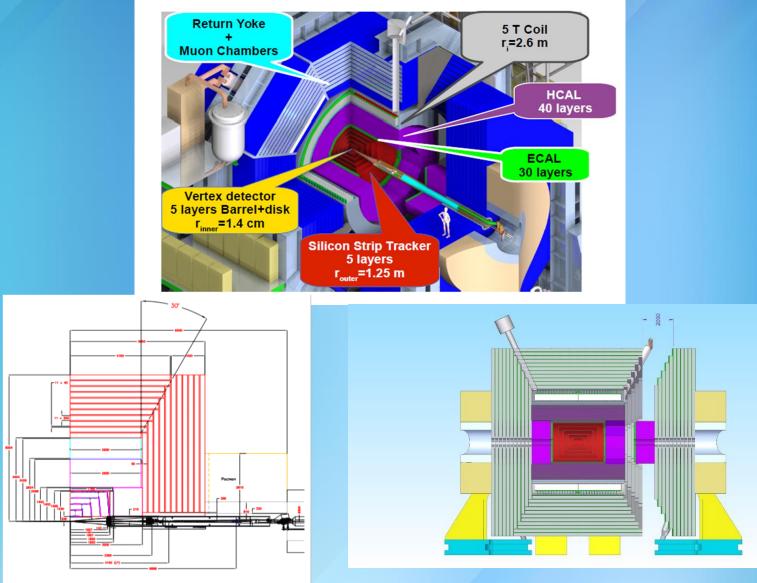
A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena. Design basics:

Robust silicon vertexing and tracking system – excellent momentum resolution, live for single bunch crossings.

Highly segmented "tracking" calorimeters optimized for Particle Flow.

Compact design with 5T field.

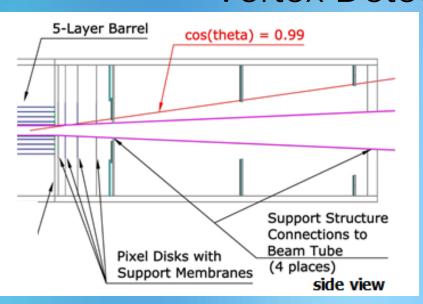
Iron flux return/muon identifier – component of SiD self-shielding.


Detector is designed for rapid push-pull operation.

5/27/2018

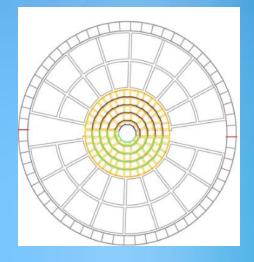
A. White SiD ALCW2018

SiD Detector Baseline



5/27/2018

A. White SiD ALCW2018


4

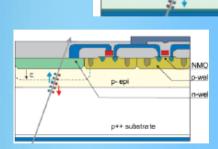
SiD Tracking: A Robust, Low Material, High Precision Silicon System Vertex Detector

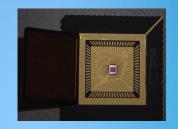
Very challenging requirements

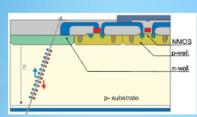
- < 3 µm hit resolution</p>
- Feature size ~20 µm
- ~0.1% X₀ per layer material budget
- < 130 μ W / mm²
- Single bunch time resolution

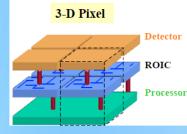
Preliminary ideas for mechanical design and support – awaiting engineering effort.

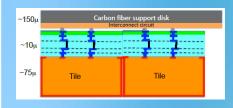
Power pulsing, forced air cooling


Needs R&D support to pursue - somewhat independent of the choice of technology.


Options for the SiD Vertex Detector


The Vertex Detector is small– late installation – no reason to choose implementation now – wait for R&D/advances in technology


- Si diode pixels ("standard" technology)
- Monolithic designs (MAPS, Chronopixel)



- Vertically Integrated ("3D") Approaches (VIP Chip)
- High Voltage CMOS (snappy timing)

pixel detector

-> Monitor developing technologies – open to new ideas!

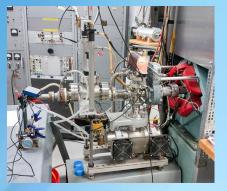
Chronopixel – baseline for SiD vertex detector

Working on Prototype #3:

Chronopixel prototype 3 development board

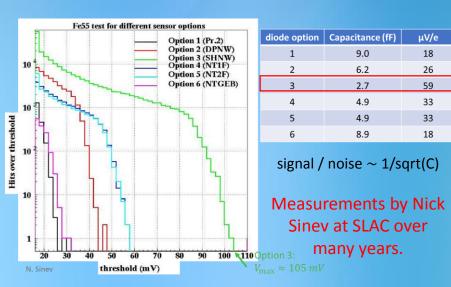
- monolithic CMOS design
 90 nm feature size,
 7 μm epitaxial layer
 280 μm thick chip
 10 ohm·cm
 manufactured by TSMC
- store up to 2 hits per pixel, 12 bit per timestamps
- 25 μm pixel pitch
- implements 6 sensor diode options

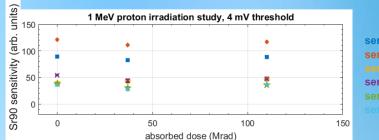

Many problems solved; concept proven valid


New - Irradiation tests at Yale

Neutron Irradiation

4 MeV proton incident on ⁷Li target to produce neutrons


total number of neutrons created is eventually determined by radiation assay of target Chronopixel still functional after $10^{13} n_{eq}/cm^2$


Past and ongoing R&D:

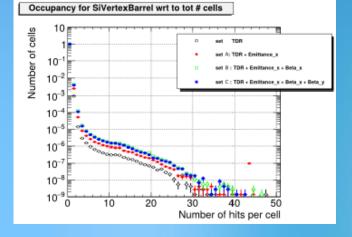
James Brau, Nikolai Sinev, David Strom – U. Oregon Charles Baltay, Keith Baker, Christian Weber – Yale Thomas Barker – Tomtronics

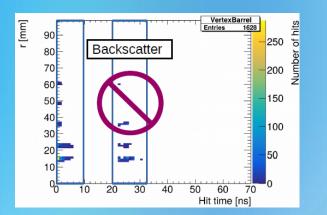
TID tests

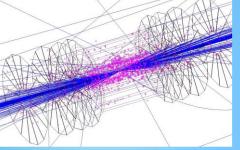
1 MeV protons incident on Chonopixel Multiple runs, track functionality by Sr90 count rate

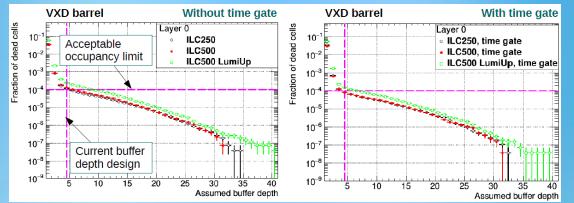
sensor type 1 sensor type 2 sensor type 3 sensor type 4 sensor type 5 sensor type 6

5/27/2018


SiD pair background study

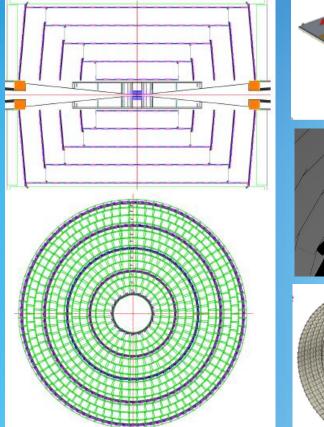

Previous study (LCWS2017) was made for new ILC250 parameter sets

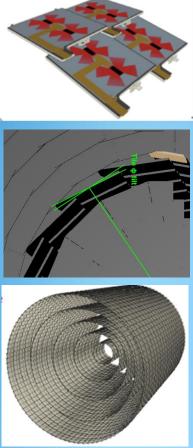

Set	ϵ_x [µm]	β_x [mm]	β_y [mm]
TDR	10	13.0	0.41
(A)	5	13.0	0.41
(B)	5	9.19	0.41
(C)	5	9.19	0.58


Anne Schuetz (DESY)

New hit time study revealed that pairs backscatter at BeamCal → backscatter pairs hit VXD 20ns after bunch crossing

Time gate (<10 ns) reduces the occupancy by up to 36%. Even for ILC500 LumiUp, occupancy close to acceptable limit \rightarrow increasing the buffer depth by only 2 would guarantee similar VXD performance throughout the first ILC stages!


5/27/2018


A. White SiD ALCW2018

8

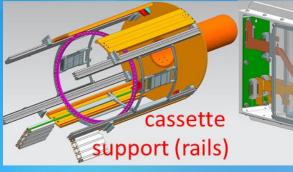
SiD Silicon (Strip) Tracker

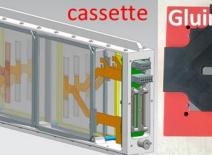
Goal – full prototype test: sensor + kPix + cables

Baseline

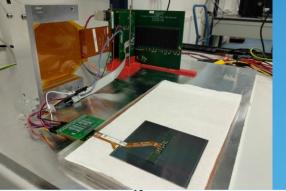
- All Silicon Tracker
 - Using Silicon micro-strips
 - 25 µm pitch / 50 µm readout
 - v2 sensor prototype July 2017*
- 5 barrel layers / 4 disks
- Tracking unified with vertex detector
 - 10 layers in barrel
- Gas-cooled
- Material budget < 20% X₀ in the active region
- Readout using KPiX ASIC
 - Same readout as ECAL
 - Bump-bonded directly to the module

kPixM – optimized for tracker, 40μm x 500μm pixels. Position resn. < 14μm, S/N >20

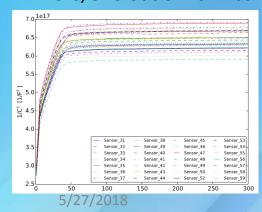

SLAC, UNM


- Pixel tracker option and alignment methods (Bristol)
- Carbon fiber structures for low material, integrated services (Oxford, Lancaster, Liverpool)

5/27/2018

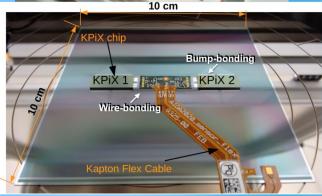

A. White SiD ALCW2018

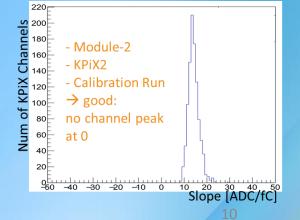
SiD Silicon (Strip) Tracker SiD Strip Sensor in a beam telescope at DESY


Goal: build a large active area telescope in a 1T solenoid (delivery Jan, 2019), providing resolution >10 μm at bending direction, and along magnetic field > 1 mm.

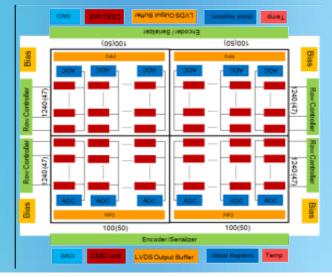
SiD strip sensor:

Thickness of 320 μ m \rightarrow material budget 0.3% X0 Pitch 25 μ m -> resolution ~7.2 μ m, Alternate strip readout


Readout system:


KPiX chip: integrated pitch adapter and 1024-channel digital readout ASIC, 920 out of 1024 connected to strips (2*920)

Good behavior in IV/CV: fully depleted @~50V, quite bare sensor (~100-200 nA).


A. White SiD ALCW2018

2019 - kPixM (monolithic pixel sensor: MAPS)

- Based on KPiX readout chip experiences
 - Beam-tested at SLAC (first generations of KPiX)
 - Design and fabricate two types of MAPS:
 - For ECAL (kPixM-Cal)
 - For tracking (kPixM-trk)

kPixM Test structure submission:

Technology LFoundry 150nm on high resistivity substrate (2kΩcm) thinned to 150µm (fully depleted with 80V)

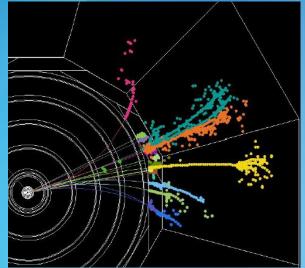
kPixM architchture

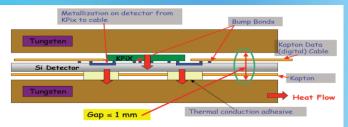
Pixel size Array Full Size Max. Signal Effective ENC Filtering S/N In pix mem. depth ADC resolution DC Power cons. Power pulsing

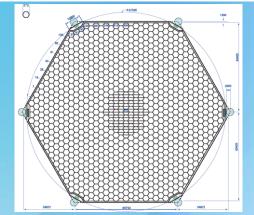
kPixM-Trk 50x500 μm² 200x2400 Stitched 5x5 reticles 1fC <200e⁻ LP + CDS >20

1 bucket 12 bits

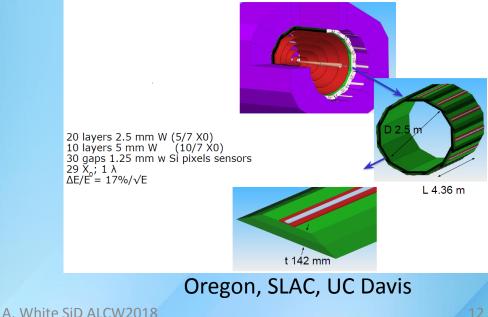
∼ 20µW/pix Yes


Jf funding available!


kPixM-Cal
1000x1000 µm ²
100x94
Stitched 5x5
reticles
1pC
<1000e-
LP + CDS
>4
16 buckets
12 bits


12 bits ~ 20µW/pix Yes

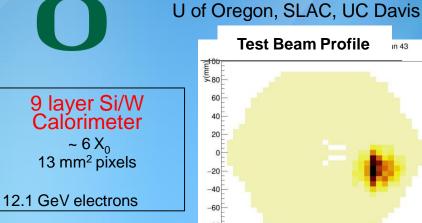
SiD Electromagnetic Calorimeter

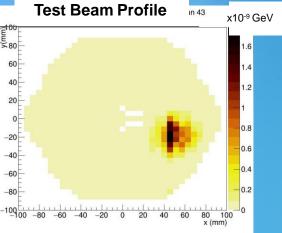


Highly granular "imaging" calorimetry essential for ILC physics program:

- Particle id/reconstruction •
- Tracking charged particles
- Integral part of Particle Flow detector design

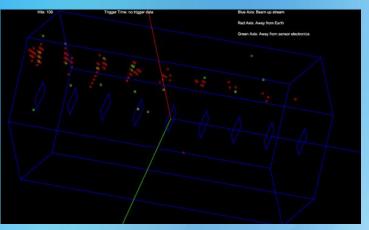
Baseline design: Silicon/Tungsten

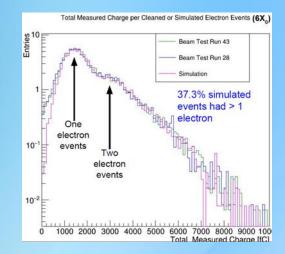

Compact Electromagnetic Calorimeter w 13 mm Moliere Radius

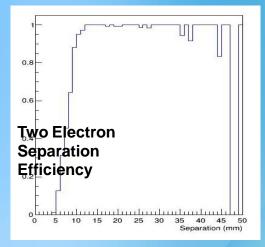


SiD SiW ECal Test Beam Analysis

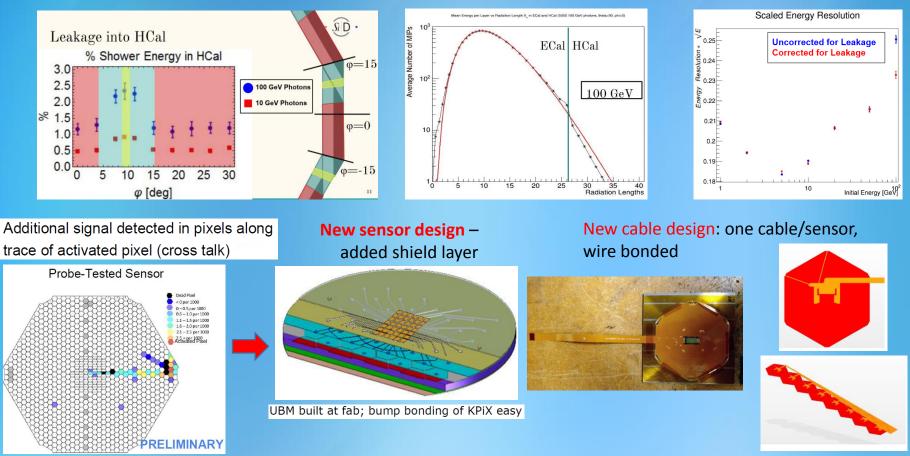
A. Steinhebel, J. Barkeloo, J. Brau, D. Mead







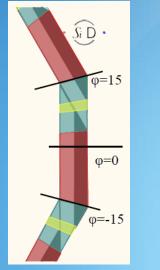
Single electron event

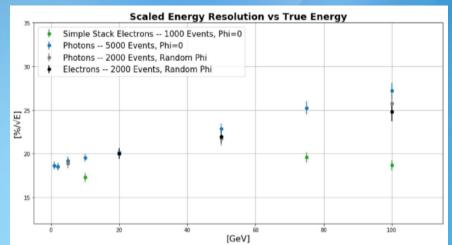

SiD Electromagnetic Calorimeter

A. Steinhebel, J. Barkeloo, J. Brau

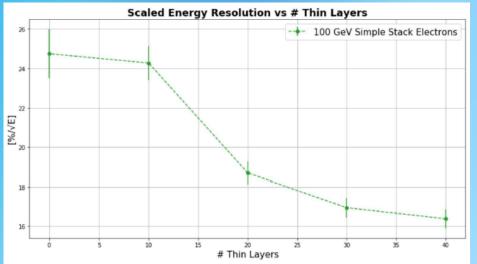
U of Oregon, SLAC, UC Davis

ECal – HCal interface – effects affecting calibration (A. Steinhebel – Oregon)

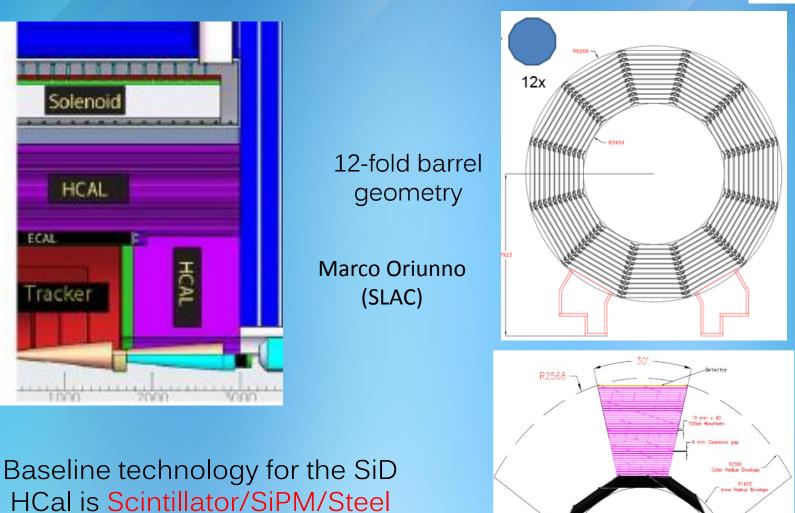

Status: testing beginning of *new* sensor bump-bonded to KPiX, new cable wire-bonded. Sensor and KPiX calibrate – all connections are good.


SiD Electromagnetic Calorimeter

Study ECal resolution at various entry points:


- Center of module
- Overlap region

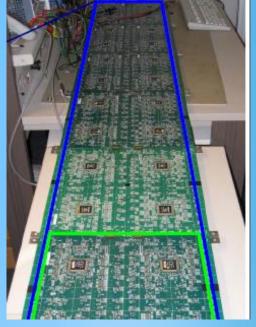
Work in progress...


Also – comparison with "simple stack" implemented using GEANT4

A. Steinhebel, J. Barkeloo, J. Brau

U of Oregon, SLAC, UC Davis

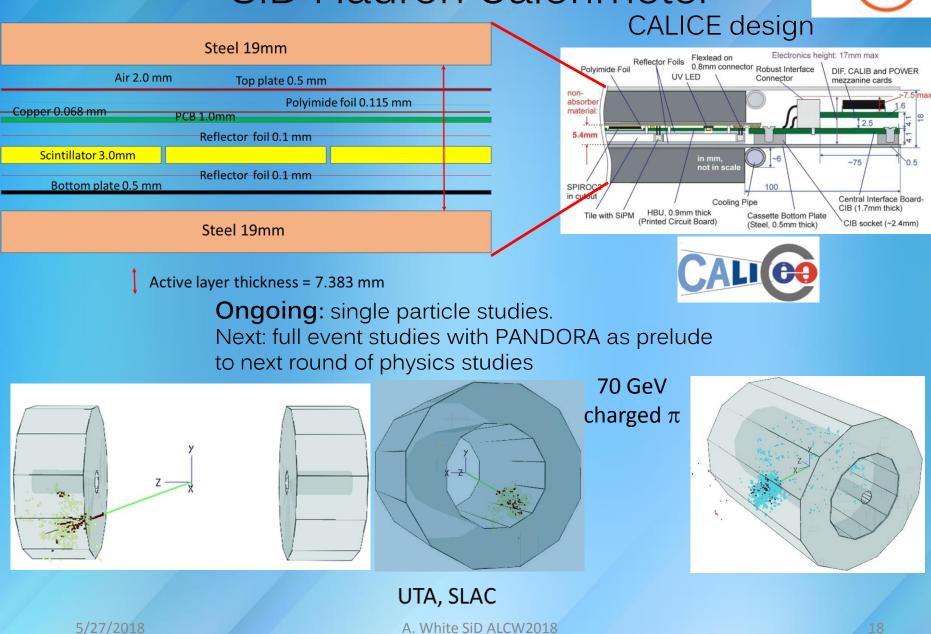
5/31/2018

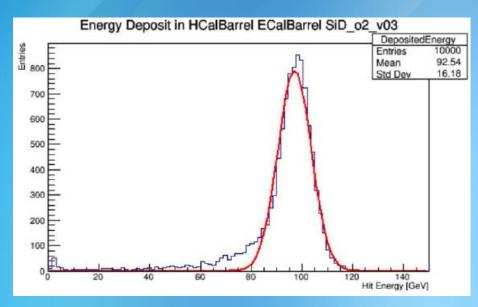


UTA, SLAC

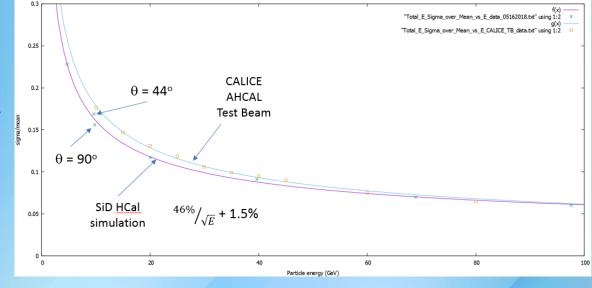
5/27/2018

- Hadron Calorimeter
 - Mechanical design following re-baselining to Scintillator/Steel
 - Follow CALICE developments, contribute to CALICE activities.





UTA, SLAC



10,000 100 GeV charged pions

Sum of energies in the ECal + HCal.

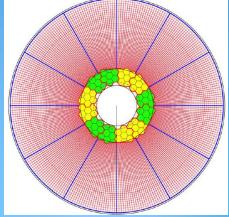
Checking new SiD simulation: compare simulated single particle energy resolution with actual CALICE test beam results

A. Myers, R. McCoy, S. Nag, D. Sharma, AW - UTA

A. White SiD ALCW2018

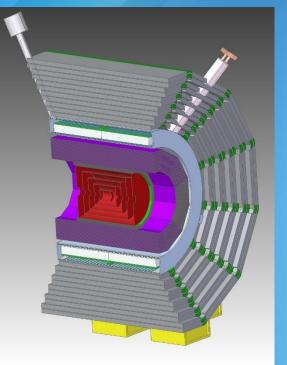
5/27/2018

Following CALICE developments for AHCAL Single tiles or mega-tiles?

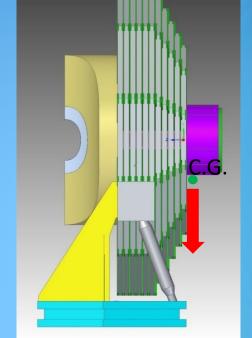


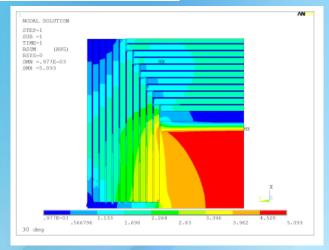
DF2000MA foil on top surface and sides

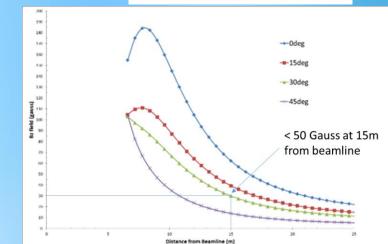
Initial SiD Hcal design ideas (for barrel – endcaps next)


Same issue for CMS HGCAL

Marco Oriunno (SLAC)


Muon identifier/Calorimeter Tail Catcher





Redesign of barrel/door junction More efficient flux return Easier transport/handling

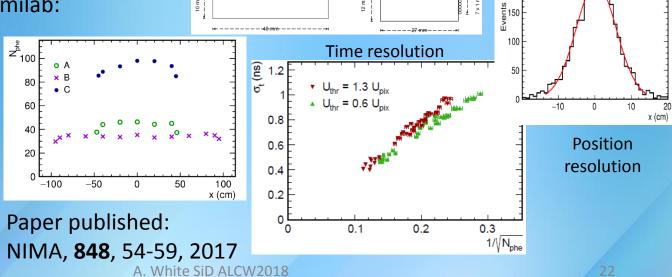
> Marco Oriunno (SLAC)

5/28/2018

Muon identifier/Calorimeter Tail Catcher

 $\sigma_x = 5.4$ cm

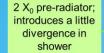
0,200



SiD Baseline – long scintillator strips with WLS fiber and SiPM readout

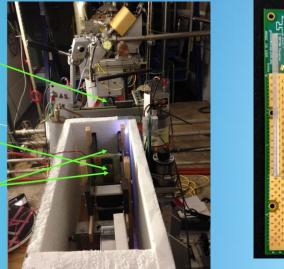
- Consistent extension of the baseline HCal scintillator technology
- Need to optimize number of layers, strip dimensions.

Development work at Fermilab:

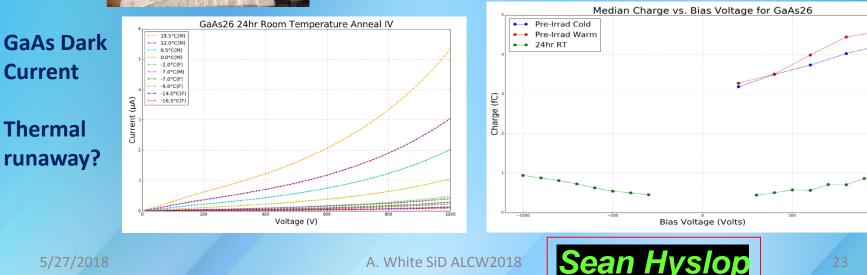


5/27/2018

Forward calorimetry



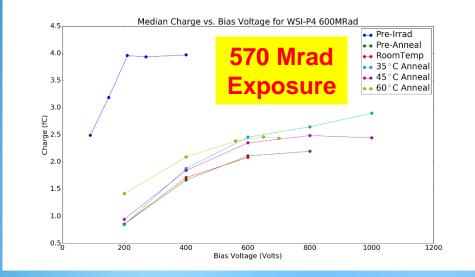
 Sensor irradiation studies for Forward Calorimetry (B. Schumm et al. UCSC – SLAC Expt. T-506)
 BeamCal radiation dose at inner radius ~100 Mrad/year

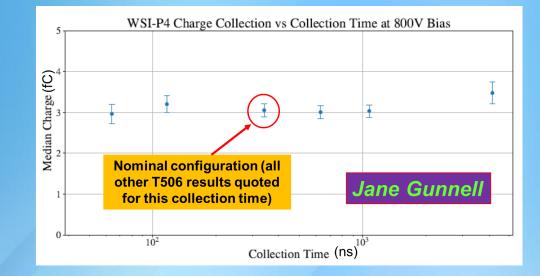

Sensor sample

Not shown: 4 X₀ "post radiator" and 8 X₀ "backstop"

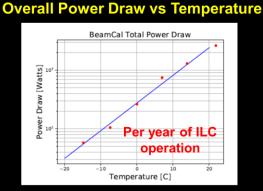
- Gallium Arsenide sensor provided by Georgy Shelkov, JINR
- Sn-doped Liquid-Encapsulated Czochralski fabrication
- 300 μm thick
- 0.16 cm² area

GaAs Charge Collection after 100 Mrad Exposure (new result) (previously only for 21 Mrad)




Forward calorimetry

Micron PF Si Diode 300µm Area 0.025 cm²



BeamCal Simulation in FLUKA

- BeamCal absorbs about 10 TeV per crossing, resulting in electromagnetic doses as high as 100 Mrad/year
- Associated neutrons can damage sensors and generate backgrounds in the central detector
- GEANT not adequate for simulation of neutron field → implement FLUKA simulation
- Design parameters from detailed baseline description (DBD)
- Primaries sourced from single Guinea Pig simulation of e⁺⁻ pairs associated with one bunch crossing

- Can limit accumulation to less than 100W per year by operating below -10° C
- At -30° C (standard for LHC sensor operation), accumulation would be of order 15 W per year

• SiD •

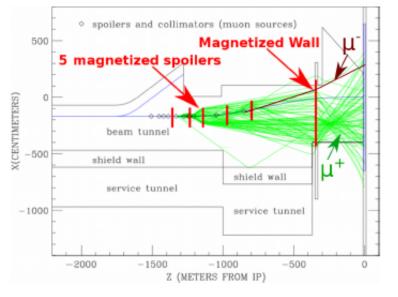
Ben Smithers

Idea: Use FLUKA to extrapolate from UCSC radiation-damage studies (T506)

Peripheral Fluence Estimates

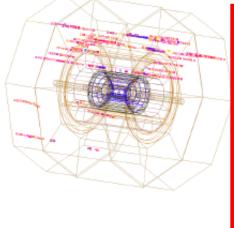
• Front-end electronics will likely be mounted just outside BeamCal instrument

Table 2: Neutron fluences at various positions 1 cm outside the BeamCal instrument, for 10^7 seconds of ILC operation, in cm⁻². The angle is measured relative to the axis defined by the center of the BeamCal and the centerline of the smaller circular cutout.


Angular position	0	$\pi/2$	π	$3\pi/2$
Layer 12 fluence (cm^{-2}) Layer 30 fluence (cm^{-2})	$\begin{array}{c} 4.9\times10^{11}\\ 4.8\times10^{11} \end{array}$	$\begin{array}{c} 5.9\times10^{11}\\ 4.6\times10^{11} \end{array}$	$\begin{array}{c} 7.3\times10^{11}\\ 5.7\times10^{11}\end{array}$	$\begin{array}{l} 8.0 \times 10^{11} \\ 5.4 \times 10^{11} \end{array}$

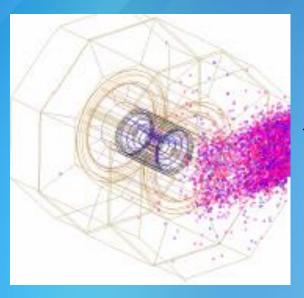
- Electromagnetic fluence less than 10¹¹/cm² (less than 2.5 krad) per year at any position
- These levels far below conventional levels of concern

MDI Studies

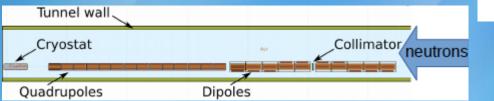

Anne Scheutz (DESY)

BDS muon study

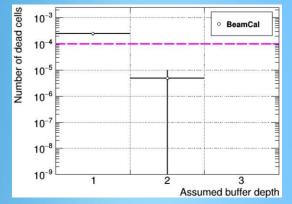
#muons / bunch crossing	ILC250	ILC500
No shielding	39.3	130.1
Magnetized spoilers	1.3	4.3
Magnetized spoilers + wall	0.03	0.6

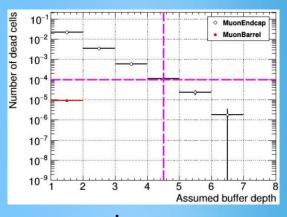


At ILC250, magnetized spoilers without wall are sufficient for occupancy mitigation.

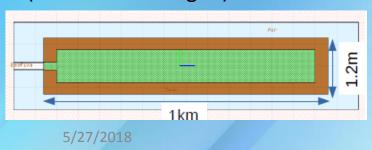

Wall might me neccessary at higher stages, and as a tertiary containment device.

5/27/2018

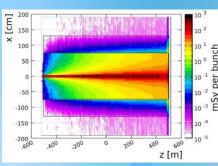

ILC main beam dump study



Anne Scheutz (DESY)



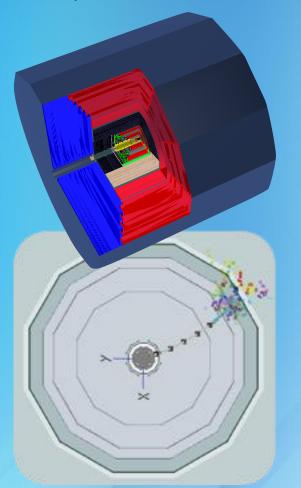
Neutron gas (of ~6 million neutrons per beam bunch → 12 million from positron and electron side) reaches the IR.
→ Neutron hits in muon system and BeamCal only
→ Inner subdetectors shielded by Pacman


1km long gaseous beam dump Al (filled with Nitrogen)

p Alternative beam dump study

- \rightarrow Dose equivalent average per bunch in proximity of beam dump:
- 10-4 mSv cm-3
- up to 3 orders of magnitude smaller than for water beam dumps
- \rightarrow no neutrons created that travel back to IR!

A. White SiD ALCW2018



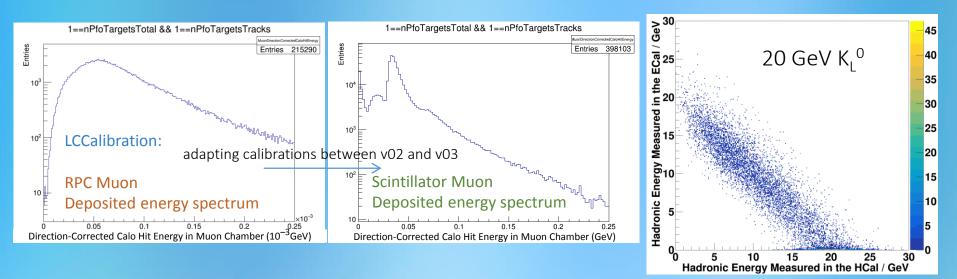
27

Computing/Software/Simulation

SiD is implemented in the common DD4hep framework, and undergoing various iterations to incorporate geometry changes and for compatibility with the latest DD4hep developments:

SiD_02_v02	obsolete	 based on 2015 engineering drawings includes a Scintillator AHCal many custom drivers includes Pandora extensions & det_type flags required for particle flow reconstruction was used for ECal/HCal optimisation, and for tracking studies
SiD_o3_v02	test	 same as SiD_o2_v02 but AHCal has Cu/brass instead of steel absorbers
SiD_o2_v03	current	 includes new stepped Muon detector with scintillators instead of RPCs updated coding conventions some new custom drivers incorporates important changes in DDSim and DDRec used for current detector optimisation and sensitivity studies

Work in progress: LumiCal in the full DD4HEP SiD simulation


Glasgow, PNNL, UTA, Oregon, UCSC

Computing/Software/Simulation

Complete simulation+reconstruction is in place using the SiD reconstruction chain, based on the CLICdet reconstruction:

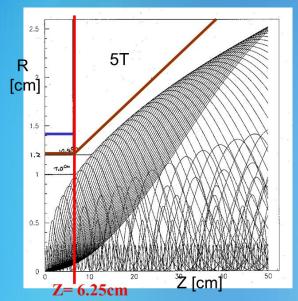
- includes full pattern recognition tracking, and Pandora particle flow reconstruction via DDMarlinPandora
- calorimeter calibration is done via Ete Remi's LCCalibration (<u>https://github.com/iLCSoft/LCCalibration</u>) and the constants are used in the current reconstruction

 current focus is on benchmarking calorimeter performance, tracking, and forward calorimetry optimisation

Glasgow, PNNL, UTA, Oregon, UCSC

A. White SiD ALCW2018

SiD going forward



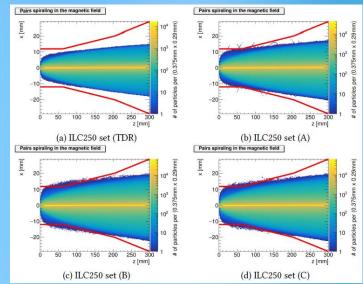
- SiD has had a viable and validated design for many years.
- A limited amount of very valuable R&D has been carried out with highly constrained support.
- We have a new simulation in the DD4HEP framework now verifying performance.
- Following simulation verification, we anticipate a new series of physics studies.
- Developing a plan for SiD support for R&D towards a TDR.
- We have many interesting opportunities for further hardware and software studies, and welcome new ideas!
- We also welcome new members of SiD !

EXTRA

VTX – Pair Background revisited for ILC250

Previous study T. Murayama

Occupancy for SiVertexBarrel wrt to tot # cells cells Number of TDR + Emittance > 10-DR + Emittance x + Beta : 10 TDR + Emittance x + Beta x + Beta y 10 10 10-10 10^{-7} 10-8 10-9 0 10 20 30 4050 Number of hits per cell


Increase luminosity by reducing ϵ_x and/or β_x

but...

Larger beam-beam interactions -> increased pair bkgd

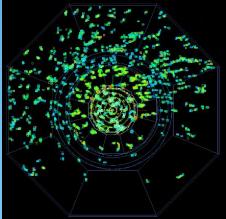
New ILC250 parameter sets

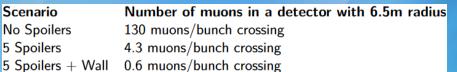
Set	ϵ_x [µm]	β_x [mm]	β_y [mm]
TDR	10	13.0	0.41
(A)	5	13.0	0.41
(B)	5	9.19	0.41
(C)	5	9.19	0.58

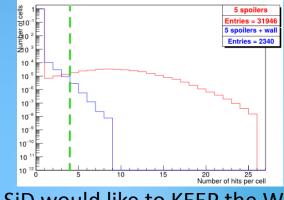
Occupancy in layer 0 for the new sets is significantly increased with respect to the TDR scheme...but can be accommodated in SiD VTX design

Anne Schuetz (DESY)

5/27/2018

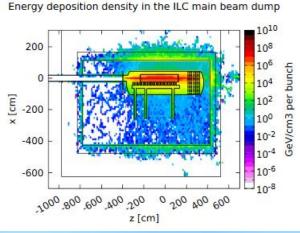

A. White SiD ALCW2018

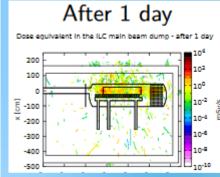

32


MDI Studies

Muons from the BDS system

Occupancy for EcalEndcap wrt to tot # cells


SiD would like to KEEP the Wall


Neutrons from the beam dump:

- 17MW dumped into water vessel
- FLUKA neutrons from model of dump NEXT:
- Neutrons through the extraction line
- Neutrons reaching IP/detector
- Neutrons occupancy in SiD

? UCSC work

5/27/2018

Anne Schuetz (DESY)