Dratf proposal:

« Intensity dependent effects at ATF2 »

\author{

- AṪF2 collaboration
}

○ Motivation: clear statement about the importance of the intensity dependence effects and global mitigations strategies on ATF2 and implications for ILC and CLIC

○ Proposal of Organizational aspects :
○ Chapters: responsible of collecting the mterial and contributions and writing the chapter
ค Reviewers: some reviewers will be needed
O Timeline:
○ First draft end September 2018
○ First revision in November ATF2 Collab meeting 20-22 Nov 2018

Contents

O 1. Introduction to Wakefields (A. Latina)

- 1.1 Basic formulae

○ 1.2 Effect in the beam
○ Two-particle model
○ 1.3 Orbit
ค 1.4 Beam size

Contents

2. Characterization of wakefield sources
(A. Faus-Golfe/K.Kubo)

- 2.1 Cavity BPMs

○ 2.1.1 Reference Cavity
○ 2.1.2 Others
ค 2.2 Collimator

- 2.3 Bellows

○ 2.4 Flanges
○ 2.5 OTRs
ค 2.6 Resistive sources

Contents

- 3 Static and dynamic effects at ATF2

○ 3.1 Simulations (P. Korisko)

- 3.1.1 Static errors: misalignments, spurious multipoles, rolls
- 3.1.2 Dynamic errors: incoming jitter (position, angle, energy,

○ charge, ...), slow drifts, Shintake monitor
○ 3.2 Measurements (K. Kubo/T.Okugi)
○ 3.2.1 Orbit (bpm resolution, charge dependence)
ค 3.2.2 Jitter

- 3.2.3 Beam size

Contents

○ 4. Global mitigation strategies (P.Korisko/A.Latina)
○ 4.1 Tuning procedure
○ 4.1.1 BPM calibration
○ 4.1.2 Orbit-based correction (including DFS, and WFS)

- 4.1.3 (WFS could be applied with closed collimator)

○ 4.1.4 Wakefield knobs (?)
○ 4.1.5 Linear knobs
ค 4.1.6 Non-linear knobs
○ 4.2 Experimental verifications
ค 4.2.1 Check beam orbit robustness
○ 4.2.2 Check beam size

Contents

○ 5 Extrapolation to ILC and CLIC (A.Latina/A.Faus-Golfe)

- 5.1 Identification of relevant wakefield sources at ILC / CLIC (BPMs,collimators, resistive sources)
- 5.2 Calculation of impacts
- 5.3 Mitigation strategies
- 5.4 Estimate tolerances (vs. luminosity loss)

Help is welcome!

- ATF2 collaboration

