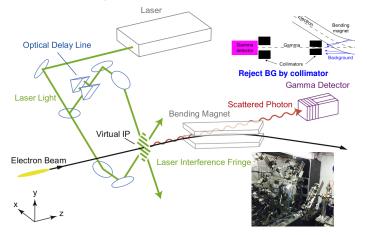
Investigation of the beam halo and momentum tail at the ATF

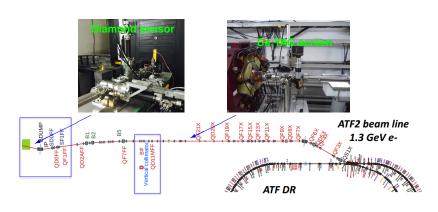

R. Yang¹, P. Bambade¹, A. Faus-Golfe¹, V. Kubytskyi¹, S. Wallon ¹, A. Aryshev ², K. Kubo ², T. Naito², T. Okugi ², N. Terunuma², M. Bergamaschi ³ and N. Fuster-Martínez³

Laboratoire de l'Accélérateur Linéaire (LAL), Orsay, France
 High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
 CERN, Geneva, Switzerland

May 28, 2018

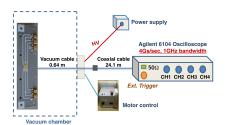
Motivations

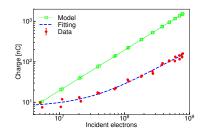
- Background induced by halo particles loss upstream of IP might reduce the modulation resolution of Shintake monitor
- To understand the genesis of halo and its distribution!



^{*} Figures from [1] J. Yan, et al., NIMA 740(2014) 31-137; [2] T. Suehara, et al., NIMA 616(2010) 1-8 🕟 4 🚊 🤛

- Instrumentations for halo diagnostic: DS and YAG/OTR
- Vertical beam halo formation: BGS process
- Horizontal halo/momentum tail:Touschek scattering?
- Conclusion


Instrumentations for beam halo diagnostics


- First measurement: wire scanners at the previous EXT line, 2005
- New diagnostics: diamond sensor (DS) detector and YAG/OTR monitor

DS: $\eta_x \approx$ 1 m, $\eta_y \approx$ 0; YAG/OTR: $\eta_x \approx$ 0, η_y tunable!

in vacuum diamond sensor detector

- Two 1.5 mm×4 mm and two 0.1 mm×4 mm sCVD DS strips
- Dynamic range $d_R \approx 10^5$ * Lower limit: induction current/noise

$$> 2 imes 10^{-3}$$
 nC (>1 $imes 10^3 e$)

* Upper limit: charge collection saturation

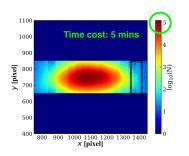
$$\sim 1\times 10^2~{\rm nC}$$

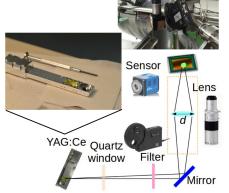
level

- Signal of core is re-scaled by "self-calibration" thanks to WS upstream of DS
 - * Approximating charge collected in the core by extrapolating WS measurement
 - * Re-scaling factor

$$\kappa(n_e) = Q_{exp}/Q_{meas}$$

[1] S. Liu, et al., NIMA, 832 (2016)

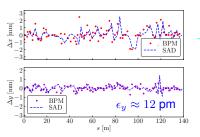



A novel Ce:YAG/OTR monitor

- YAG —> core/halo; OTR —> core (saturation-free)
- Collaboration among KEK, CERN and LAL
- · Critical Performance:

DNR > 10⁵ and resolution < 10 µm

- Scanning (x or y) using YAG + ND filter
 avoiding the blooming effect
- · Multi-shot measurements
 - -> Position/beam size jitter < 5%

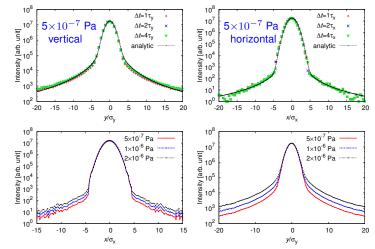


Monte Carlo simulation of BGS

- Analytical approximations based on K. Hirata's model
- Realistic COD in the DR \rightarrow approach the operation ϵ_{u}
- Two atoms per molecule with $A=\sqrt{50}$ → represent residual gas
- Tracking scattered & unscattered particles separately

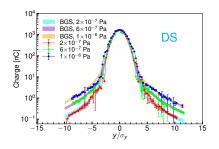
Main parameters of ATF DR	
Beam energy [GeV]	1.282
Circumference [m]	138.56
Ver. emittance [pm]	12
Hor. emittance [nm]	1.17
Energy spread [%]	0.056
Bunch length [mm]	5 .3
Damping time [ms]	27.0/19.8/20.6

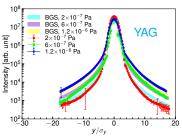
Script developed in SAD



Extraction and transport in ATF2 DS I YAG EXT **BGS** particles Unscatterd particles Elastic BGS (x, x'+δx', v, v'+δv', z, dp) Inelastic BGS (x, x', y, y', z, dp+δp)

[1] K. Hirata and K. Yokoya, Part. Accel. 39, 147 (1992)


Numerical predictions from two methods


- Two predictions agree well: vacuum pressures $< 2 \times 10^{-6}$ Pa
- Vertical tail is more significant, in the y/σ_y coordinate

Vertical beam halo due to BGS

- Beam profiles measured by DS after re-scaling and that by YAG monitor are in good agreement with the numerical predictions
- Higher tail for the worsened vacuum: $2 \times 10^{-7} \text{ Pa} \rightarrow 1 \times 10^{-6} \text{ Pa}$
- Vertical beam halo is dominated by elastic BGS¹!

¹ See, R. Yang, *et al.*, Phys. Rev. Accel. Beams 21, 051001 (2018)

Vertical emittance growth due to BGS

- Small-angle beam-gas scattering
- ver. emittance dilutionLong ver. damping time (27 ms)
- Numerical estimations predict a ϵ_y growth from 12.8 pm to 18.7(18.9) pm for a vacuum pressure of 5×10^{-6} Pa
 - Analytic Simulation

 Simulation

 18

 20

 18

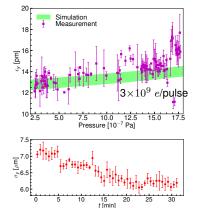
 21

 14

 12

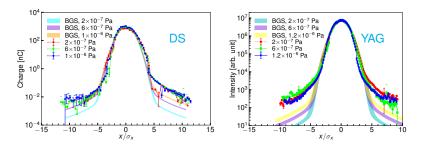
 12

 12


 13

 23

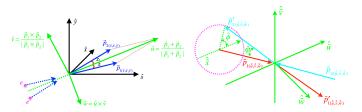
 45


 Pressure [10⁻⁶ Pa]
 - Measurable and significant!

- Ver. emttance obtained using an X-ray SR monitor; 2×10^{-7} Pa to 1.75×10^{-6} Pa
- More than 10% emittance growth!

Horizontal profile measurements

- Measurements are higher than the numerical predictions (BGS)
- Asymmetric distribution, more particles on the high energy side
- No significant change for the degraded vacuum
- Other dominating mechanisms (Touschek scattering?)



PS: Optical aberration and secondary emission in ATF2, and the imperfect extraction kicker field -> demonstrated to be small

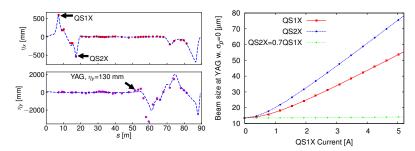
Tail from Coulomb scattering of particles?

- IBS/Touschek scattering is very strong in the ATF DR
- Large-angle collisions result in large δ_p -> Touschek lifetime
- Particles after large-angle θ collisions and remain within the separatrix -> Momentum tail and hor. tail (?)

$$\Delta \vec{p}_{1,2} = \pm p_{1,2} \begin{pmatrix} \gamma_t \left[\gamma_t (\cos \chi_{1,2} - \beta_t/\beta_{1,2}) \cos \tilde{\varphi} + \sin \chi \sin \tilde{\varphi} \cos \tilde{\phi} \right] - \gamma_t \bar{p}_s/p_{1,2} \\ \sqrt{\gamma_t^2 (\cos \chi_{1,2} - \beta_t/\beta_{1,2})^2 + \sin^2 \chi} \sin \tilde{\varphi} \sin \tilde{\phi} \\ \sin \chi (\cos \tilde{\varphi} - 1) - \gamma_t (\cos \chi_{1,2} - \beta_t/\beta_{1,2}) \sin \tilde{\varphi} \cos \tilde{\phi} \end{pmatrix}_{\hat{u},\hat{v},\hat{u}}$$

Momentum tail is more "clean", i.e., less influence from transverse non-linearity —> Momentum tail imaging

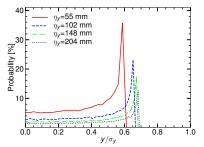
[1] M. Martini, CERN-2017-006-SP

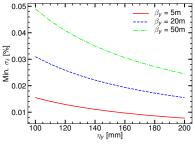


Design of energy spectrum measurement (1)

Min. distinguishable energy deviation

$$\delta_{m,\mathrm{sep}} \geq 2\sqrt{\epsilon\beta}/\eta$$

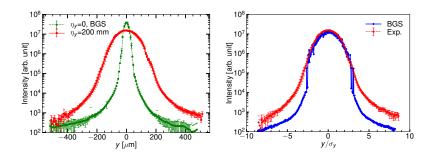

- Small β and large η , but $\epsilon_x \approx 100\epsilon_y$ -> vertical observation is superior!
- Vertical dispersion blowing up:
 - Adjusting η_v by tuning QS1X/QS2X with specific ratio, e.g., 10:7
 - Ver. profile <— energy spectrum if η_y is large enough (>150 mm)


Design of energy spectrum measurement (2)

- Vertical dispersion at the YAG can be increased to around 300 mm
- Impact of the betatron xy coupling (R_{31}, R_{32}) is small, e.g., <0.6 σ_{y} for $2J_{x}=400\epsilon_{x}$
- Min. distinguishable momentum deviation:

around 3×10^{-4} for $\eta_y>160$ mm

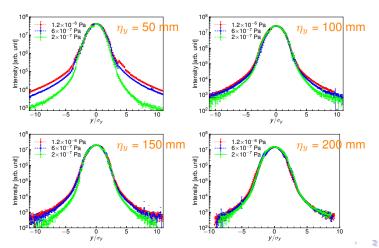



Increase of the vertical dispersion

- Residual ver. dispersion -> non-zero current of QS1X/QS2X
- Dispersion at YAG is approached by that measured by a BPM attached to QM16 quad. ($\Delta s \approx 30$ mm)
- $\beta_y \approx 50$ m; Dispersion domain for $\eta_y > 160$ mm –> Measurements for $\eta_y \approx 200$ mm @ YAG

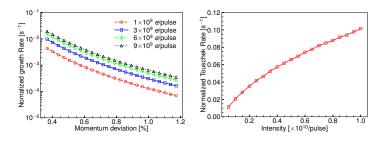
First observation of energy spectrum

- Simulations with the measured vertical betatron profile at EXT kicker
- For $\eta_y=200$ mm, the measured vertical tail is higher than the prediction by at least a factor of 4 -> Momentum profile!?



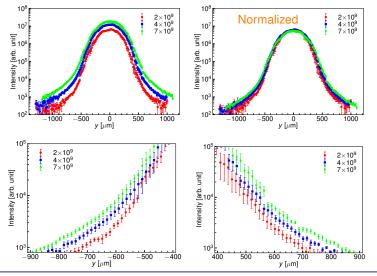
 Influence of the betatron halo (BGS) and xy coupling terms? Due to Touschek scattering?

Energy spectrum - vacuum dependence

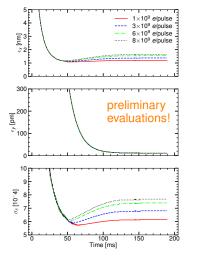

- BGS process results in the vertical betatron halo
- -> Variation of vertical tail/halo for various vacuum pressures ?
- $\eta_y = 50 \text{ mm} -> 200 \text{ mm}$

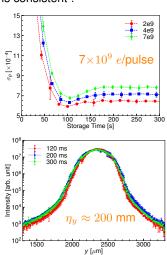
Betatron distribution + momentum deviation -> momentum distribution

Energy spectrum - intensity dependence

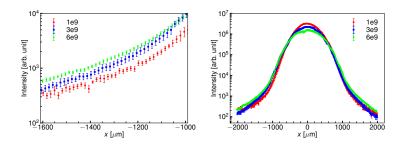

- Touschek scattering depends on beam intensity and emittances
- Higher beam intensity -> higher Tous. scattering rate -> higher tail (?)
- Analytical estimation based on Piwinski's model –> Intensity from 1×10 9 e/pulse to 6×10 9 e/pulse, the scattering rate increase from 2×10 8 /s to 4×10 9 /s for 0.35%< δ <1.2%

 Wake potential distortion is not included and can further weaken the intensity dependence


Energy spectrum - intensity dependence


- Experiment conditions: $\eta_y \approx 200$ mm, DR vacuum 2×10^{-7} Pa
- Significant dilution of the rms energy spread and increase of momentum tail

Energy spectrum vs. extraction time


- ullet Emittances and Touschek scattering rate \sim the storage time (damping, IBS)
- ullet Evolution of σ_p and momentum tail seems consistent !

Touschek scattering -> Horizontal tail?

- Measurements of the momentum tail indicate a highly possible influence of Touschek scattering
- Tous. scattering induce also horizontal tail/halo due to a large η_x ?
- Increased hor. tail/halo for a higher beam intensity -> consistent with the intensity dependence of momentum tail

Detailed simulations of Touschek scattering are of critical importance!

Summary

- DS detector and a novel YAG/OTR monitor has been developed and operated for beam halo studies
- Vertical halo is mainly induced by elastic BGS in the damping ring, demonstrated by numerical estimations and measurements
- Momentum tail was visualized through a proper adjustment of the vertical dispersion. Evolutions of momentum tail as a function of intensity, gas pressure and extraction time are qualitatively consistent with the presence of Touschek scattering
- Monte Carlo simulations of Touschek scattering is underway...

Many thanks to ATF collaboration!

Thank you for your attention!

Back up...

Numerical approximation of BGS halo

Solving the diffusion equation in the presence of RAD, QE and IBS

$$\frac{d\vec{x}}{ds} = -[H(\vec{x}, s), \vec{x}] + \xi(\vec{x}, s)$$

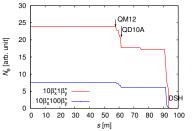
• Distribution function of normalized coordinate $u = x/\sqrt{\beta}$:

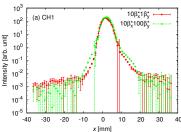
$$\psi(u) = \frac{1}{2\pi} \int e^{i\omega u} \tilde{\psi}_t(\omega) \tilde{\psi}_f(\omega) d\omega$$

Final expression derived using Campbell's theorem

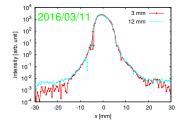
$$\psi(x_i) = \frac{1}{\pi} \int_0^\infty \cos(\omega x_i) \exp(-\frac{\omega^2 \sigma_{x_i}^2}{2} + \frac{N}{\alpha} \hat{f}(\omega \sqrt{\bar{\beta}\beta_i})) d\omega$$

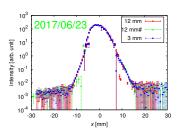
with


$$\hat{f}(\tilde{\omega}) = \frac{2}{\pi} \int_0^1 d\zeta \frac{\Re[\tilde{f}(\tilde{\omega}\zeta)] - 1}{\zeta} \cos^{-1} \zeta$$
$$\tilde{f}(\tilde{\omega}) = \int d\theta_x f(\theta_x) \cos(\tilde{\omega}\theta_x)$$


[1] K. Hirata and K. Yokoya, Part. Accel. 39, 147(1992)

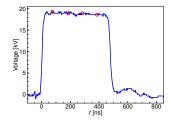
Horizontal halo at DSh for $1\beta_y^*$ and $100\beta_y^*$ optics

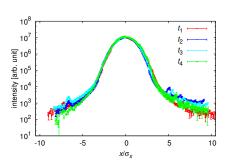

- Few influence of chromaticity and aberration in FF, and less beam loss in high β_u region for $10\beta_x^*100\beta_u^*$ optics
- Higher horizontal tail/halo when 1β^{*}_y → 100β^{*}_y observed by DS.
 Effect of chromaticity and abberation in FF was negligible for nominal optics!

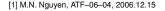


Influence of secondary emission in FF

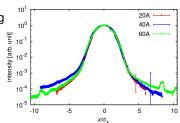
- Beam loss at FF and BDUMP and secondary particles shower are controlled by a vertical collimator upstream (12 mm/3 mm half-aperture)
- Experiment in 2016 shows observable effect of secondary shower
- Insignificant influence due to larger fluctuation in June, 2017

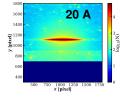


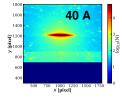

 Horizontal halo at Post-IP seems not dominated by aberration or secondary emission in FF. But, we should avoid their influences! -> YAG

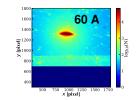

Halo from imperfect EXT kicker field

- Imperfection of extraction kicker field will drive particles to be large amplitude, and it is difficult to simulation thus influence
- Horizontal profile was measured for several locations of kick timing (difference larger than 28 ns) using YAG/OTR monitor
- Horizontal tail/halo was slightly changed!

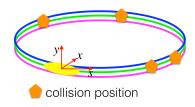


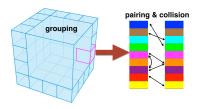





Influence of optical focusing

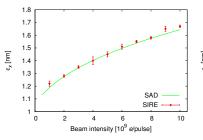
- Beam profile is modulated by varying the strength of quad. QF21 upstream of YAG/OTR monitor
- Horizontal dispersion has been corrected
- Horizontal halo and its asymmetry depend on the optical focusing!

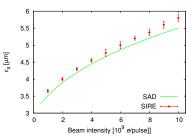


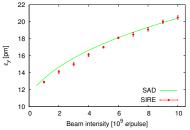


Monte Carlo simulation with SIRE

[1] A. Vivoli, IPAC'10, WEPE090

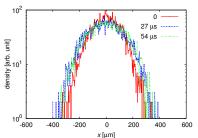

- T & A binary collision model (BCM)
- Routine:
 - o Generate particles in action-angle frame (J, Φ)
 - Track particle element-by-element, J = const and random phase advance
 - o Perform grouping, pairing and collision at each element The variance of polar angle $<\theta^2>$ is expressed as

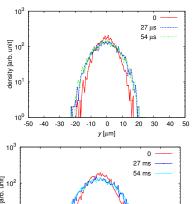

$$<\theta^2> = \frac{4\pi\rho_v r_e^2 c_0 \Delta t}{\beta_{cm}^3} (\log)$$

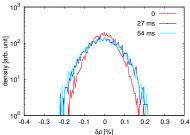

 Damping and quantum excitation are considered in each turn

Emittance dilution due to IBS

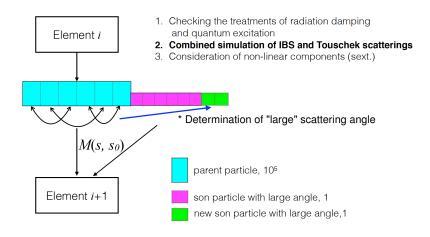
- Equilibrium emittance could be calculated by envelope matrix method (multi-iteration) in SAD Gaussian phase-space distribution, including dispersion, xy coupling and tail cut (log)≈10
- Good agreement for ϵ_x and ϵ_s with varying (log) in simulation, but larger ϵ_y predicted by simulation



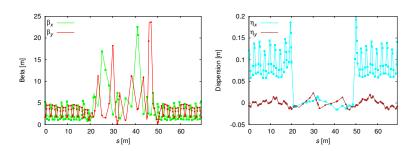




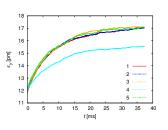
Evolution of beam profiles with IBS diffusion


- Diffused transverse and momentum profiles remain Gaussian distribution
- To observe the possible tail from large angle collisions, we attempt to combine IBS & Touschek scattering in simulation...

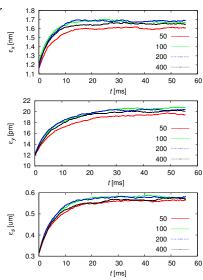
Simulation of tail from large angle collisions



 Meanwhile, we also attempted to find evidence of halo from IBS by the measurement of momentum tail

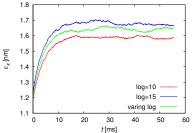

Twiss parameters of ATF ring in SIRE

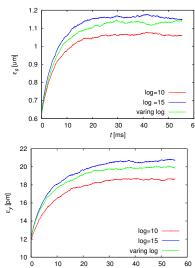
• 250 observation points after lattice compression (Δz >10 cm)



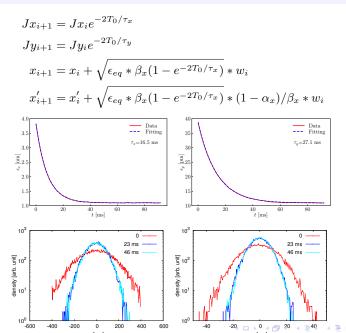
Emittance growth due to IBS

 Multiple tracking are essential for Monte Carlo simulation (large deviation)




- Diffusion process and equilibrium are affected by cell density
- Cell density of 100/100/100 and 200/200/100 seems acceptable (1 % unscattered)

Determination of (log) factor


- Diffusion from IBS depends on $<\theta^2>\propto(\log)$
- Varying (log) is used in IBS simulation

t [ms]

Transverse radiation damping and fluctuation

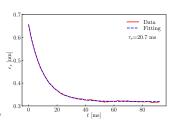
Longitudinal radiation damping and fluctuation

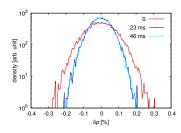
Synchrontron phase ϕ_s and radiation energy loss per turn U_0 is

$$\phi_s = \pi - \omega_{RF} \cdot z_s/c0$$

$$U_0 = V_{RF} \cdot \sin \phi_s$$

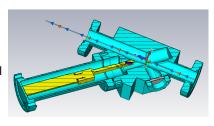
Particle energy change per turn is

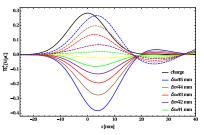

$$\delta p_{i+1} = \delta p_i + V_{RF} \sin(-z\omega_{RF}/c_0 + \phi_s)/E - U_{0/2}$$

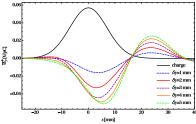

Energy change due to damping and excitation is

$$\delta p'_{i+1} = \delta p_{i+1} e^{-2T_0/\tau_s} + \sigma_{p,eq} \sqrt{4T_0/\tau_s} w_i$$

Longitudinal position shift above transition energy is

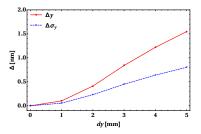

$$z_{i+1} = z_i - \delta p'_{i+1} T_0 \alpha_c c_0$$

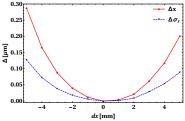



Wakefield property of OTR/YAG monitor

- Benchmarking based upon Ref. cavity (thanks to A. Lyapin)
- Simulation of wakefield with a simplified chamber/holder model
- Simulation parameter: $\sigma_z = 7$ mm, Q = 1 pC

 $ightharpoonup A_{wy} pprox 0.05 ext{ V/pC}$ and $A_{wx} pprox 0.4 ext{ V/pC}$, with beam is displaced by 5 mm




Effect of WK at YAG monitor to nanometer beam size

 Orbit change and beam size growth at IP can be estimated by linear calculation

$$\begin{split} \Delta y &\approx R_{34} \frac{e d_y}{E} \int\limits_{-\infty}^{\infty} W_T(z) \rho(z) dz \\ \Delta \sigma_y &\approx \sqrt{R_{34}^2 (\frac{e d_y}{E}) \sigma_w^2} \end{split}$$

- Assuming beam offset 3 mm at YAG and beam intensity as 3×10^9 /pulse
- ► Effects: $\Delta y = 0.9$ nm, $\Delta \sigma_y = 0.5$ nm; $\Delta x = 0.87$ μ m, $\Delta \sigma_x = 0.02$ μ m

