Recent Activities of Cavity Fabrication Facility in KEK

Takeshi DOHMAE Mechanical Engineering Center, KEK 30th/ May/ 2018

Our current motivation

- To realize the ILC project, a cost reduction is imperative issue
- From view point of cavity fabrication:
 Establish mass production techniques.
 - \geq Reduce material cost (\leftarrow this talk).
 - ✓ Low purity Nb (low RRR Nb)
 - ✓ High Ta contained Nb:
 - Low Ta contained Nb is expensive due to special
 - chemical treatment

✓ Large grain Nb:

Forge & rolling process is skipped

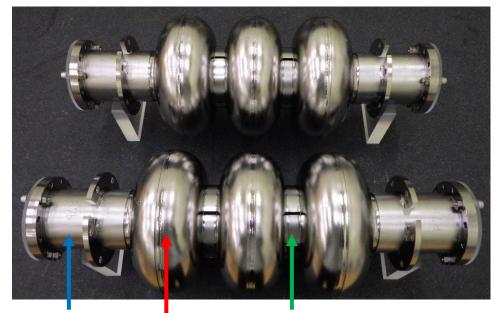
Main equipments in KEK-Cavity Fabrication Facility (CFF)

EB welding machine (SST, Germany) Max. beam voltage: 150 kV

Microscope (Surface inspection)

Servo press machine (AMADA, Japan) Max. applying force: 1500 kN

A cavity can be manufactured in KEK site combined with machine tools at MEC



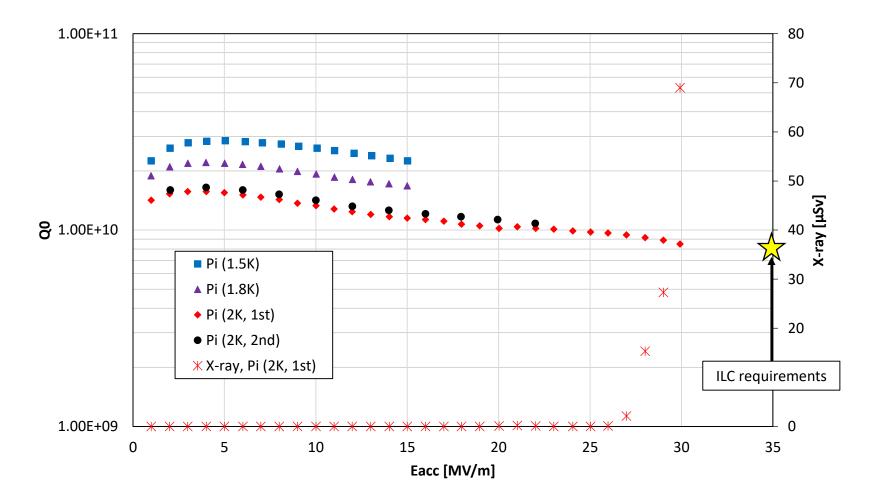
Chemical polishiing

CNC vertival lathe (Moriseiki, Japan)

Material 1: Low RRR, high Ta contained Nb

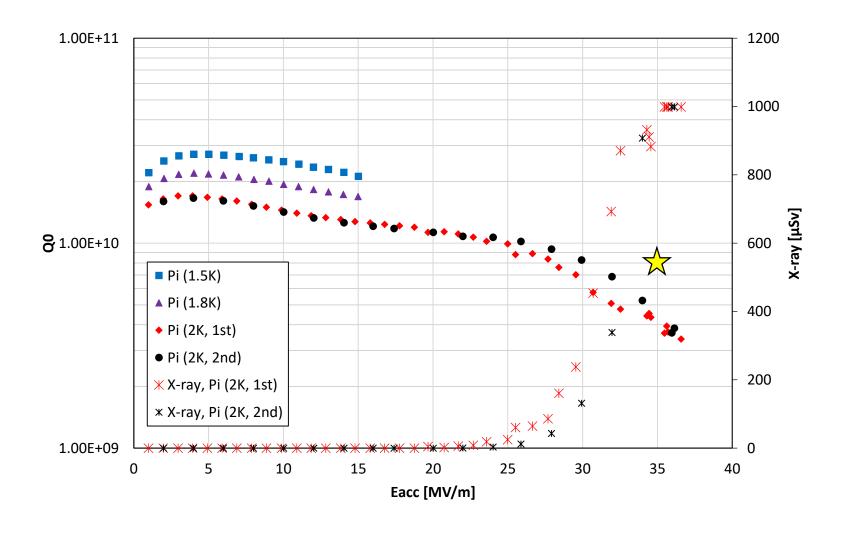
RRR of used Nb

	RRR
Start material	60~103
After 2 melting (ingot)	277~298
Nb sheet used for cell	293
₩ILC requirements RRR≧300	


Beam tube Stiffener

Start material: Nb ingot from CBMM, Commercial grade (Ta: 2000 ppm Max.)

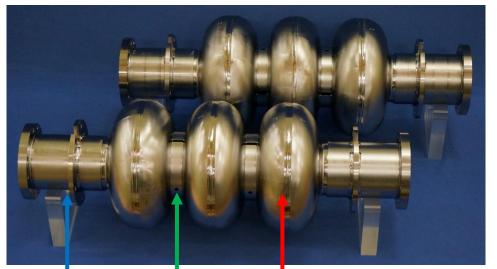
- Beam tube: Forged into seamless tubes by ULVAC
- Stiffener rings: Forged and rolled into sheet by ULVAC
- Cell: Melted 2 times (normally ~5 times), forged and rolled


Two 3-cell cavities (Tesla-like shape) are fabricated using these materials

Material 1: Performance test results (cavity1)

Q₀, _{max}: 1.65 × 10¹¹ @ 2K, π-mode E_{acc}, _{max}: 30 MV/m @ 2K, π-mode <u>(23 MV/m final)</u>

Material 1: Performance test results (cavity2)



Q₀, $_{max}$: 1.70 × 10¹¹ @ 2K, π-mode E_{acc}, $_{max}$: 36 MV/m @ 2K, π-mode

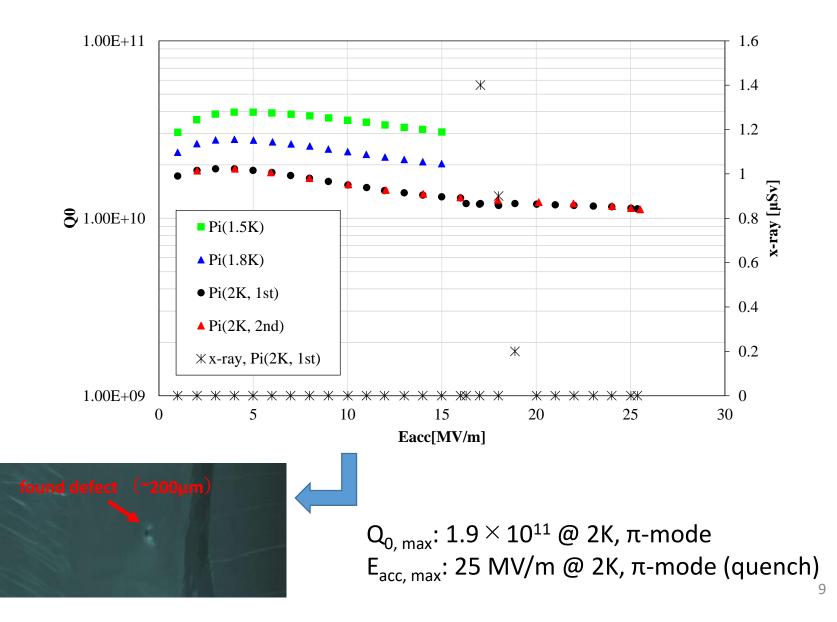
Summary of material 1

- CBMM commercial grade (RRR: 60~103, high-Ta) niobium ingot was used for a start material.
- Forge and rolling process for Nb sheets were done by ULVAC. (for stiffener rings)
- Seamless beam tubes were produced by ULVAC.
- The RRR was improved to 278~298 after two times melting by ULVAC. This Nb was used for cavity cells.
- Two 3-cell test cavities were successfully fabricated by KEK-CFF.
- The max. E_{acc} were 30 and 36 MV/m, respectively.
- 50% cost reduction was not accomplished.

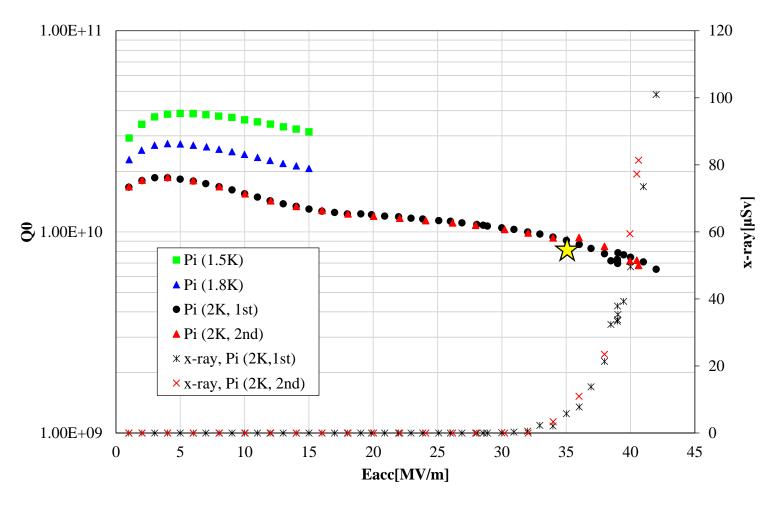
Material 2: Mid RRR, high Ta contained, LG

LG Nb (φ260)

Beam tube Cell Stiffener

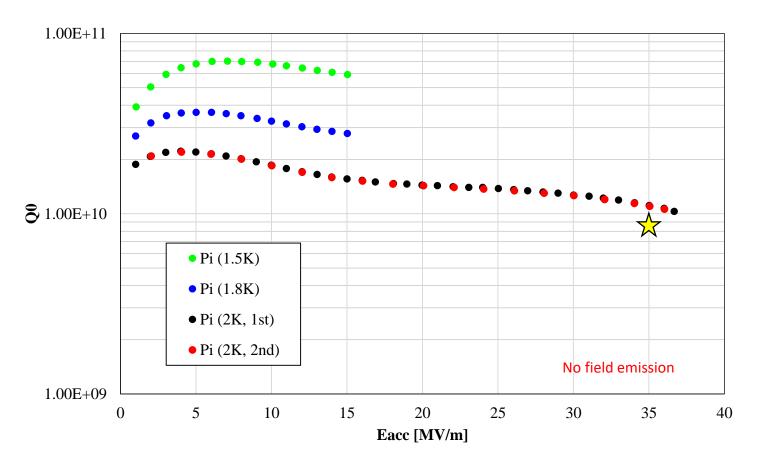

- Beam tube: Low RRR (< 100), high Ta contained (same as previous cavity)
- Cell: Mid RRR, high Ta contained large grain (LG) Nb

→ Forge and rolling process were skipped (cost reduction) RRR=242~298


• Stiffener: Recycled Nb (melted, forged and rolled by ULVAC)

Two 3-cell cavities (Tesla-like shape) are fabricated using these materials

Material 2: Performance test results (cavity1)


Material 2: Performance test results (cavity2)

Q_{0, max}: 1.9×10^{11} @ 2K, π-mode E_{acc, max}: 42 MV/m @ 2K, π-mode (40MV/m final)

Material 2: Performance test results2 (cavity1)

Defect which caused quench was removed, and measured again

 $Q_{0,\text{ max}}$: 2.2 \times 10^{11} @ 2K, $\pi\text{-mode}$ $E_{acc,\text{ max}}$: 36 MV/m @ 2K, $\pi\text{-mode}$

IMPORTANT NOTE

LG Nb has large crystal→strong anisotropy

• Deformation after press forming

 \rightarrow increase fabrication process

 \rightarrow more difficulties of fabrication

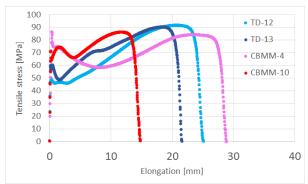
Different mechanical properties by sheet & ingot
 →difficult quality control

Other problem

• Different RRR: even in a same ingot (this time: 242 – 298)

 \rightarrow difficult quality control

We should carefully discuss about this material



LG by CBMM

Results of tensile test: LG Nb (normal temperature)

Processing characteristics 1

Large deformation after press forming

- Difficulties in trimming due to unleveled edges
- Difficulties in welding due non-uniform thickness
- Increase welding processes due to bad roundness at the equator
 →Nb discs were annealed before press forming

Unleveled edges

Non-uniform thickness

Special jig for equator EBW

Summary of material 2

- CBMM LG (RRR=242~298, high-Ta) sheets were used for cells.
- The max. E_{acc} were 36 and 42 MV/m, respectively.
- There were lots of difficulties for fabrication due to its strong anisotropy.
- Low RRR and high-Ta Nb was used for beam tubes, and it did not affect cavity performance.

(→Need further observations)

50% cost reduction could be possible with this material.

<u>Summary</u>

- Current issue for cavity fabrication is cost reduction to realize ILC.
- KEK-CFF focus on cavity materials.
 - ✓ Material 1: Low RRR, high-Ta contained Nb (FG)
 - ✓ Material 2: Mid RRR, high-Ta contained LG Nb
- Acceptable results were measured with cavities made by material 2. But lots of difficulties in fabrication.
- Two 9-cells will be fabricated using material 2 in FY2018.

Backup

Material 1: Chemical compositions

unit: wt ppm

	С	Ν	0	н	Zr	Та	Fe	Si	W	Ni	Мо	Hf	Ti	S
Spec. ASTM B391 ^{*1}	100	100	250	15	200	3000	100	50	500	50	200	200	300	N/A
Spec. CBMM	50	100	250			2000	50							10
Ingot ^{*2}	<30	33	26	<2	<1	1194	3	<20	<5	<1	<1	<2	7	<10
Sheet ^{*3}	<10	30	<10	1	<10	1210	<10	<10	<10	10	<10		<5	
Ingot ^{*4}	<10	<10	<10	<1	<10	1430	<10	<10	<10	10	<10		<5	

^{*1} R04210-Type 2, Commercial grade unalloyed niobium

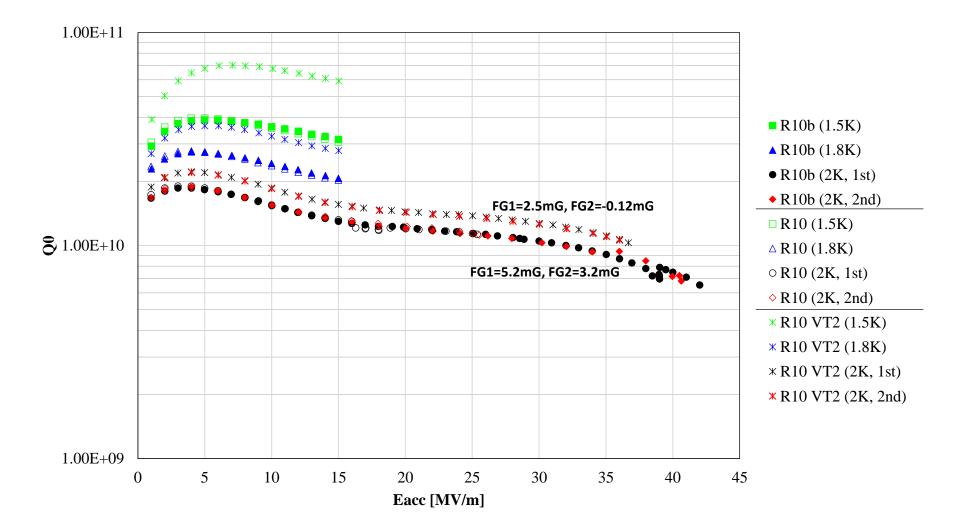
^{*2} Start material, measured by CBMM

^{*3} Low RRR, after 2nd process, measured by ULVAC

^{*4} Medium RRR, after 2-time EB melting, measured by ULVAC

Material 2: Chemical compositions and RRR

unit: wt ppm


	С	Ν	0	Н	Zr	Та	Fe	Si	W	Ni	Мо	Hf	Ti	S
Spec. ASTM B393 ^{*1}	30	30	40	5	100	1000	50	50	70	30	50	50	50	N/A
Ingot ^{*2}	<30	6	5	<2		1191 [*]	<3		<5		1			<10

- ^{*1} R04220-Type 5, RRR Superconducting Grade Pure Niobium
- *2 Start material, measured by CBMM

^{*3} Ta content is allowed up to 1300 in spec.

Measured RRR at KEK 242~298 (Sliced ingot) Spec. >200

Summary

