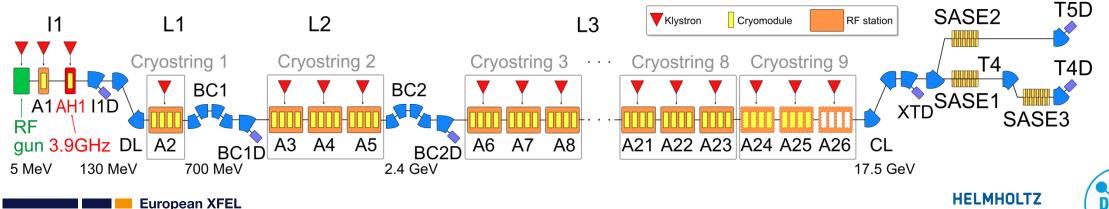
Recent Status of Beam Commissioning at the European XFEL

Mathieu Omet for the linac team

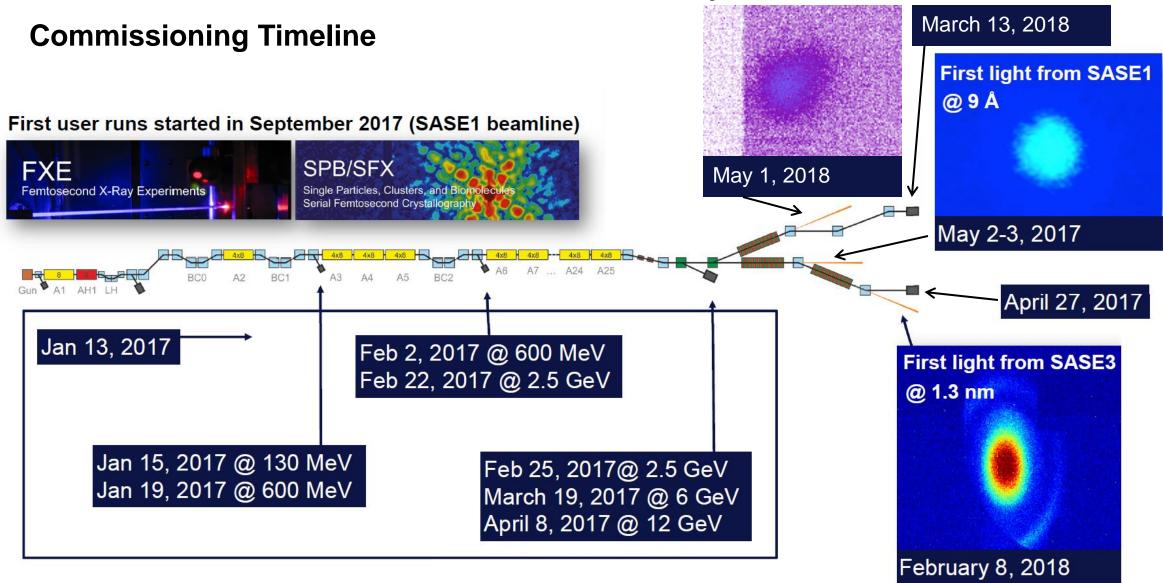
ALCW, Fukuoka, 2018/05/30

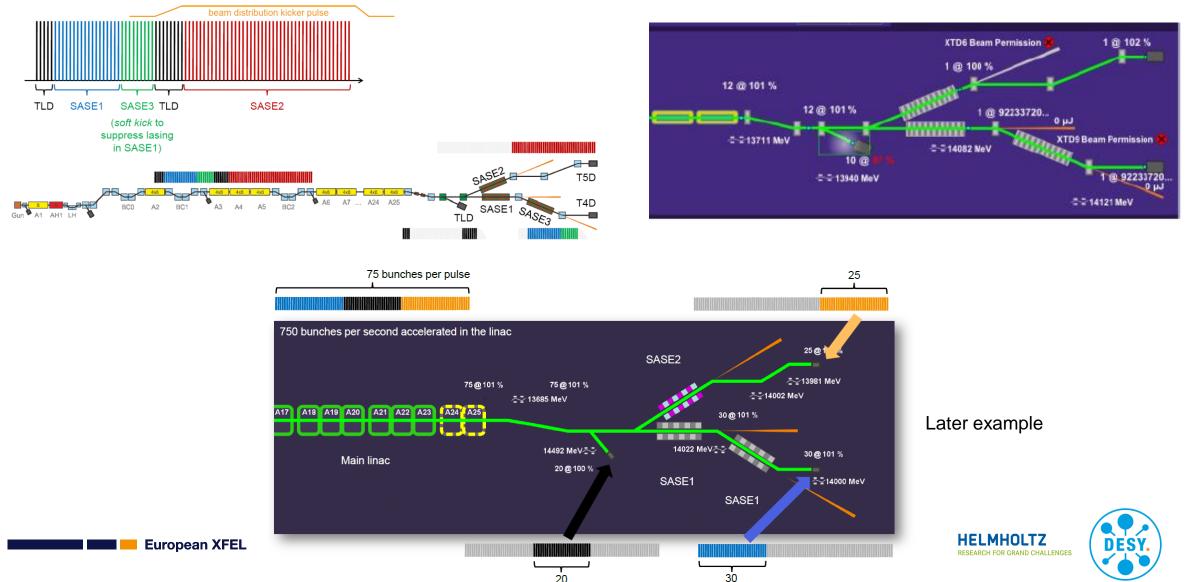
Contents

- Introduction
- Beam Commissioning
- SASE Performance
- Linac Performance
- Energy Reach
- Outlook / Summary



The European X-ray Free Electron Laser (XFEL)

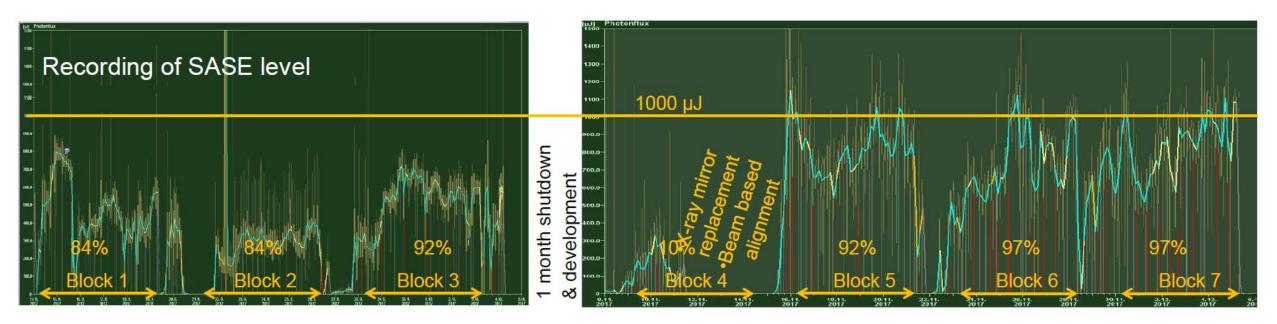

- Soft and hard X-ray light experiments
- ~800 TESLA-type cavities
- Resonance frequency 1.3 GHz
- 32 cavities per XTL RF station
- Design energy 17.5 GeV
- Pulsed operation 10 Hz
- RF commissioning finished up to cryostring (CS) 8 → 25 RF stations on beam


SEARCH FOR GRAND CHALLENGES


First light from SASE2 @ 1.77 nm

March 15th: First Beam to TLD, T4D, and T5D due to Advanced Bunch Patterns

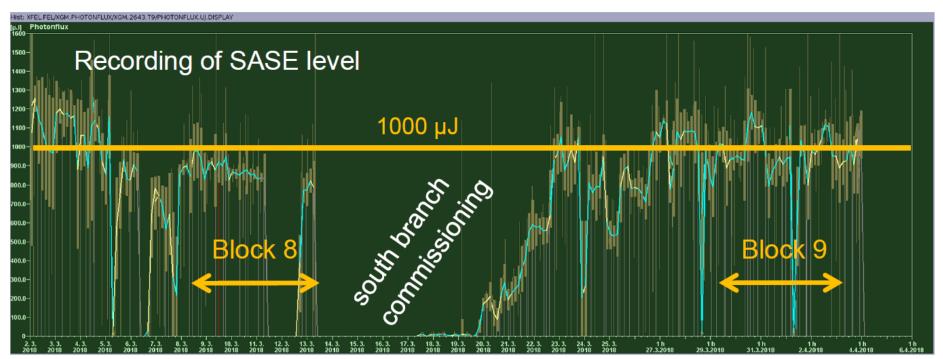
May 2nd: First Simultaneous Lasing in all Three Undulators



RESEARCH FOR GRAND CHALLENGES

European XFEL

User Run Blocks 1-7 in 2017: SASE Performance



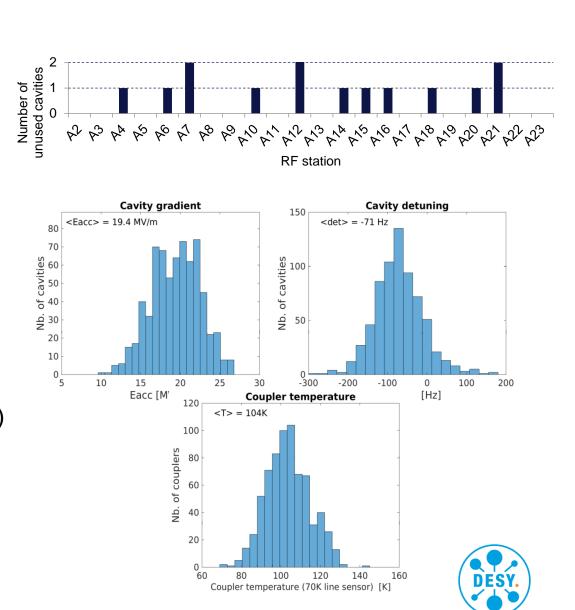
Seven 5 day user blocks starting September 14th

- Availability (= SASE delivery above threshold)
- Little tuning needed (because of limited flexibility offered), but frequent small wavelength changes and variation of bunch number (1-30)
 - Prominent error sources: operation & controls, RF trips (frequent, but very fast recovery), magnets

User Run Blocks so far in 2018: SASE Performance

Two 5 day user blocks so far in 2018

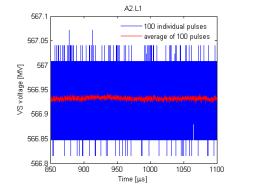
- A higher SASE pulse energy could be provided compared to the user blocks in 2017
- The RF trip rate was reduced

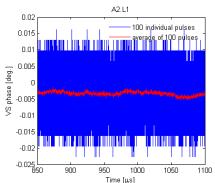

Recent Status of Beam Commissioning at the European XFEL

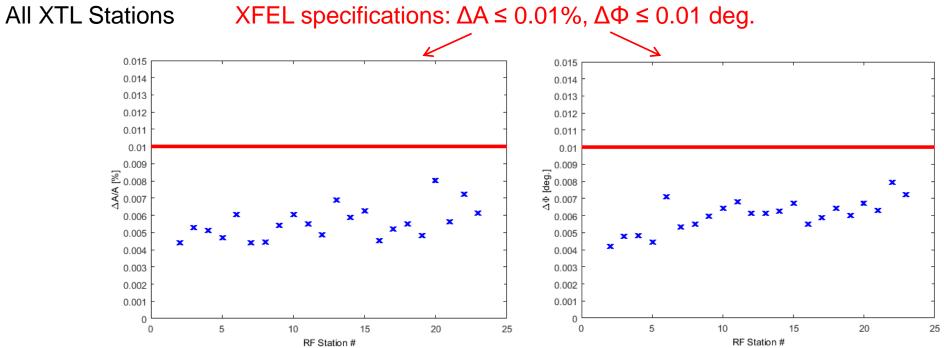
Some Linac Statistics

- Cavities detuned and/or couplers shortened (as of 21.03.2018)
 - Total number of cavities 704, unusable 15 (2%), used 689 (98%)
 - 11 out of 22 RF stations actually have all cavities tuned

Operation

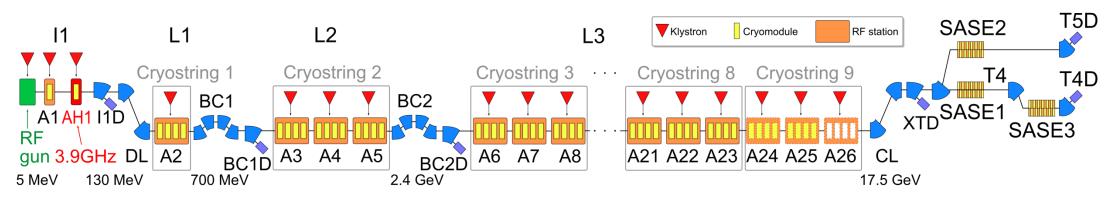

- Data taken during machine setup, just as an example (06.02.2018)
- Data "as is": no particular effort made to optimize parameters
 - 14 GeV total energy
 - \rightarrow "only" 19 MV/m average energy (up to 28 MV/m)
- Detuning offset + large spread
 → clearly piezo compensation is missing
 - Coupler temperature spread, within acceptable range




Mathieu Omet, 2018/05/30

XTL Station Performance

- RF flattop amplitude and phase stability (RMS)
- A2 as an example



Pulse to pulse stability about a factor of 5 to 6 better

European XFEL

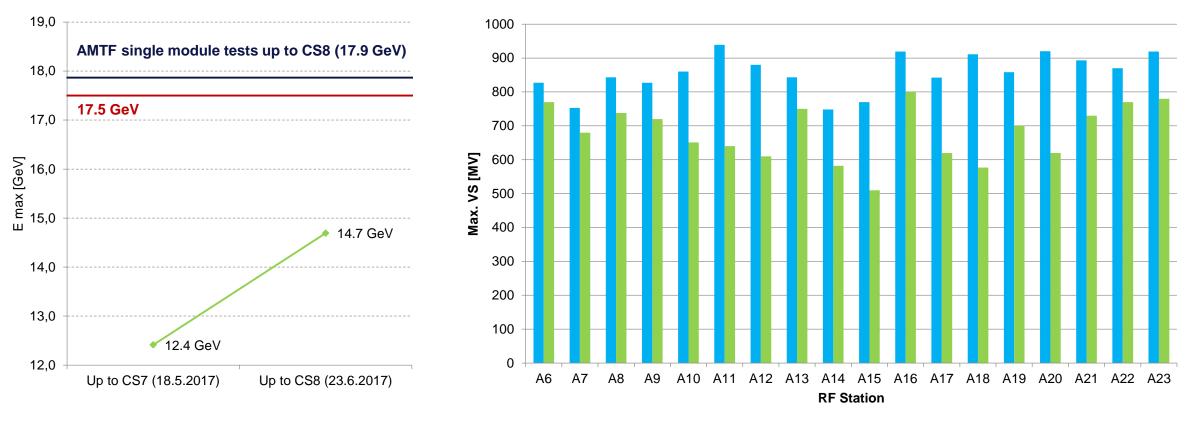
Electron Beam Energy Stability

LH	l1T	B0	B1	B2	CL	T4	T4D
2.6E-4	8.1E-5	1.4E-4	9.7E-5	5.1E-5	1.6E-4	1.5E-4	1.8E-4

Measured on 1st of February 2018

Mean value over 5 measurements over 4 hours

Comment by L. Fröhlich:


"Relative energy stability as measured by the energy servers. This is the standard deviation of the energy of the first bunch over 100 shots, divided by the beam energy. Contains some contribution by BPM noise, obviously. "

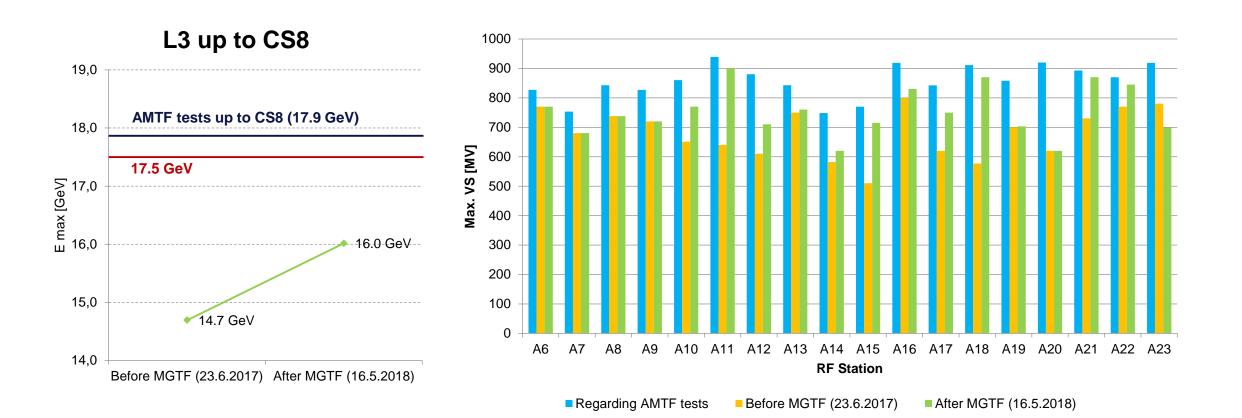
Electron beam energy stability requirement: 1E-4

European XFEL

RF Performance as of 23rd of June 2017

■ Regarding AMTF single module tests ■ Up to CS8 (23.6.2017)

Maximum Gradient Task Force (MGTF)


- Team of experts (12 members with a core team of 6)
- Investigation of single stations in parallel to regular beam operation
- Investigation on single cavity granularity
 - Checklist for unified testing procedure
- Work out solutions for maximal possible gradient (discussions, calculations, simulations, retests, etc.)
- Document findings in station reports

FOR GRAND CHALLENG

RF Performance as of 16th of May 2018

14

RF Performance as of 16th of May 2018

RF station	AMTF theoretical energy gain [MeV]	XFEL max energy gain [MeV] (closed loop operation)	Performance regarding AMTF	Limitation
A10	860	770*	89.5%◆	M3.C8 quenches at 19.8 MV
A11	939	900*	95.8%*	Coupler heating*
A12	880	710•	80.7% [♦]	M2.C5 quenches at 25.8 MV, high rad.
A13	843	750◆	89.0%◆	M4.C1 quenches at 25.4 MV
A14	748	620*	82.9%*	Soft quenching and probably field emission at M3.C5 and M3.C7*
A15	770	710	92.2%	M4.C2 quenches at 19.4 MV
A16	919	830*	90,3%◆	M3.C8 quenches at 27.0 MV
A17	842	750◆	89.1%◆	M3.C8 quenches at 25.0 MV
A18	911	850	93.3%*	M1.C1 quenches at 27.8 MV
A19	858	703◆	81.9% [♦]	M3.C8 quenches at 18 MV
A20	920	620*	67.4%*	Waveguide sparking*
A21	893	870* ^{,†}	97.4% ^{*,†}	Missing piezo operation, otherwise M1.C5 quenching at 30.3 MV
A22	870	845	97.1%	M3.C5 quenches at 19.9 MV
A23	919	700*	76.2%*	Waveguide sparking*

•Waveguide system not optimal

*Still under investigation, thus not final result

⁺A21: First case cavity degradation (M4.C2: > 31 MV → 22.3 MV), which would limit maximal VS voltage, thus cavity was detuned and excluded from VS

Note: The voltage calibrations at AMTF and XFEL are different (power-based vs beam-based)

European XFEL

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

be continued after modification

Test status:

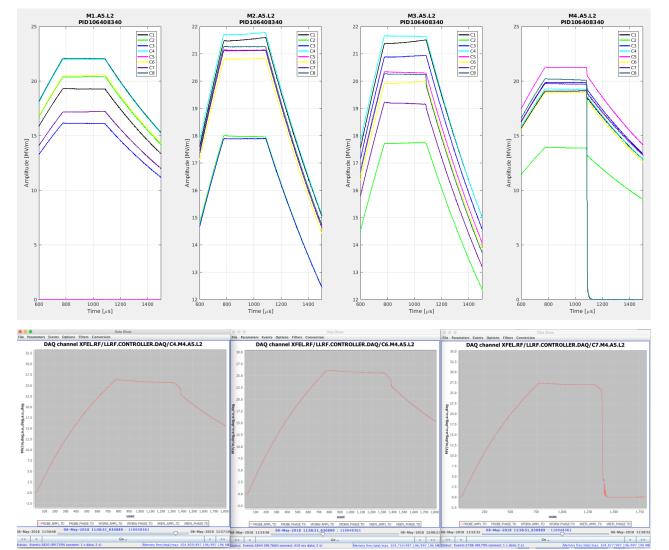
MGTF Status and Schedule

- 14 of 20 stations in L3 investigated
- 8 of 20 stations reached final limit
- Average performance reached compared to AMTF tests for the finished stations: 90.3%
- Energy gain so far due to MGTF work: 1.3 GeV
 - 4 cavities detuned in scope of the MGTF, since they were limiting the VS voltage
 - Investigations on L3 stations will most likely finish end of summer 2018

Mathieu Omet, 2018/05/30

Date	Station	Comment
21.6.2017	A19	
12.7.2017	A19	
26.7.2017	A15	
2.8.2017	A11	
10.8.2017	A20	
23.8.2017	A20	
23.8.2017	A18	
30.8.2017	A10 A21	
6.9.2017	A22	
13.9.2017	A13	
20.9.2017	A14	user run
27.9.2017	A10	user run
4.10.2017	-	maintenance
11.10.2017	-	maintenance
18.10.2017	-	maintenance
25.10.2017	-	
1.11.2017	A13	
8.11.2017	-	lack of spare station
15.11.2017	-	lack of spare station
22.11.2017	-	lack of spare station
29.11.2017	-	lack of spare station
5.12.2017	A13	quick check
6.12.2017	-	shutdown
13.12.2017	-	shutdown
20.12.2017	-	shutdown
27.12.2017	-	shutdown
3.1.2018	-	shutdown
10.1.2018	-	shutdown
17.1.2018	-	shutdown
24.1.2018	-	shutdown
31.1.2018	A13	
7.2.2018	-	TTC meeting
14.2.2018	-	He pressure test
21.2.2018	-	BBS Travemünde
28.2.2018	A18	
7.3.2018	A14	
14.3.2018	A12	
21.3.2018	A16	
28.3.2018	A18 A17	
4.4.2018	-	shutdown
11.4.2018	-	shutdown
18.4.2018	-	shutdown
25.4.2018	-	snatuown
25.4.2018		
	-	
8.5.2018	A5	
16.5.2018	A23	
23.5.2018	A20	
30.5.2018	A12	
6.6.2018	A14	
13.6.2018	A11	
20.6.2018		shutdown
27.6.2018		shutdown
4.7.2018		shutdown
11.7.2018	A9	
18.7.2018	AS	
25.7.2018	A7	
1.8.2018	etc.	

Station status	Legend
A6	finished
A7	to be continued
AS	to be continued after modification
A9	untested
A10	
A11	
A12	
A13	
A14	
A15	
A16	
A17	
A18	
A19	
A20	
A21	
A22	
A23	
A24	
A25	


Special Case of L2

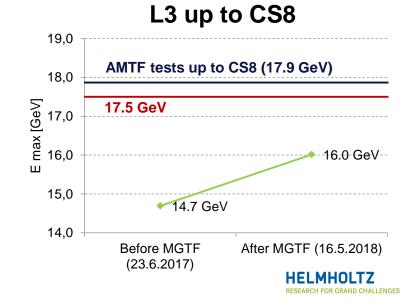
Requirements

Flexibility to ramp gradients up and down anytime (e.g. compression adjustments)

Experience at A5

- Generation of dark current, which hits the wall up stream, creates gamma showers and trips coupler spark detectors at multiple couplers at multiple modules
- We believe at the moment that this can be conditioned away
- Further investigations are scheduled for middle of July after user run and shut down


Recent Status of Beam Commissioning at the European XFEL


Outlook

Energy reach

- CS9 commissioning nearly done
- ► A24: 932 MV (AMTF)
- ► A25: 492 MV (AMTF)
- ► => 1.42 GV * 90% = 1.28 GV
- Continued MGTF effort necessary
- Performance
 - Continuing advanced LLRF commissioning
 - Machine operation studies
 - Tunnel radiation / dark current studies
 - Further RF station characterizations towards performance
 - ► E.g. detuning studies during FB operation
- Availability
 - Trip analysis
 - Software solutions are under development for automatic data recording and statistics generation

Summary

- Commissioning schedule
 - Simultaneous lasing in all three undulator sections
- SASE performance during user runs
 - Already excellent availability
- 2% of cavities in the linac are unusable
- Example of 14 GeV operation (<Eacc> = 19.4 MV/m)
- LLRF amplitude and phase stability about factor of 2 below the specifications
- Beam energy stability about a factor of 1.5 above the specification

- Energy reach / Maximum Gradient Task Force
 - 14 out of 20 station investigated in L3, 8 reached final limit
 - Increase of maximal possible beam energy from 14.7 GeV to 16.0 GeV (to be operated at)
 - Investigations most likely to finish end of summer '18
 - L2 also to be investigated
- Special case of L2 under investigation
- Outlook

Mathieu Omet, 2018/05/30

19

ご清聴有難うございました。

Thank you very much for your attention!

