High-Gradient High-Efficiency SRF Cavity Development at JLAB

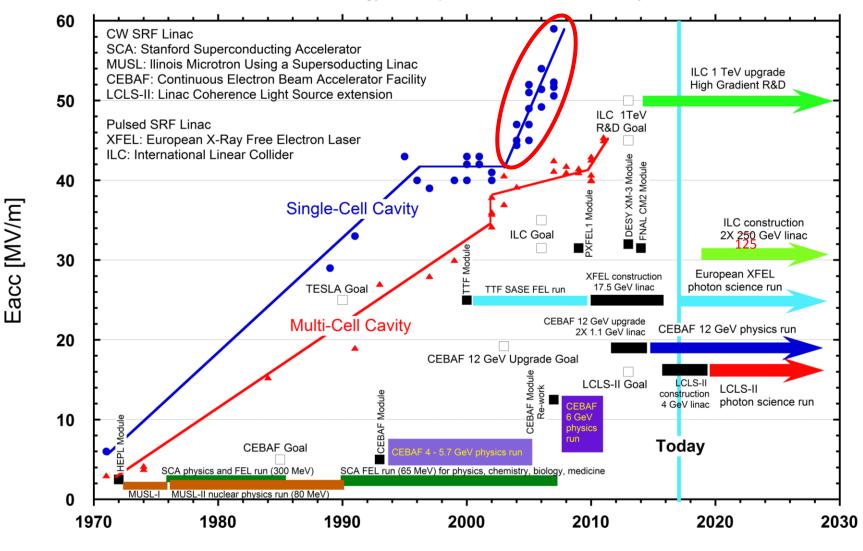
Latest Results on LSF-Shape Nb Cavities JLAB-KEK Collaboration Under US-Japan HEP Cooperation Program

Rongli Geng, JLAB Hayato Ito, Hitoshi Hayano, KEK

Other collaborators:

Zenghai Li, Chris Adolphsen, SLAC Jiankui Hao, Kexin Liu, PKU

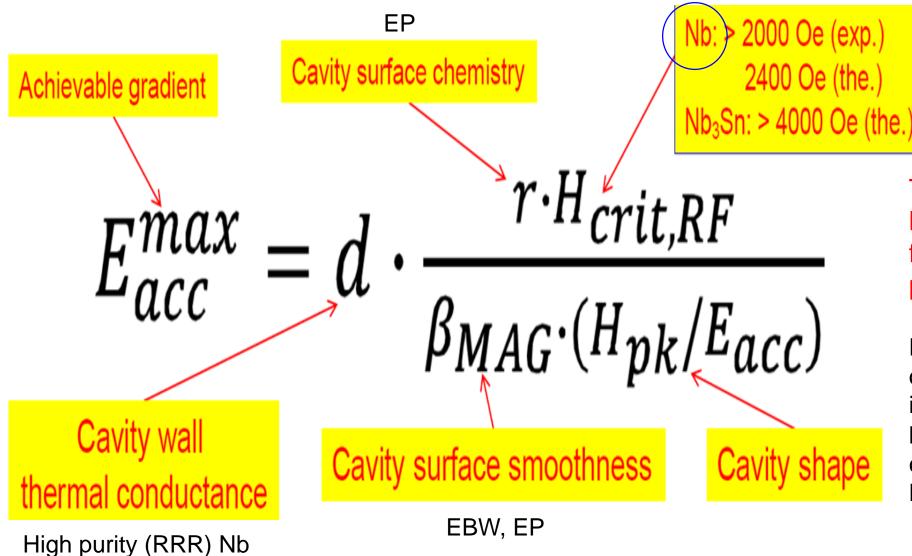
Other Jefferson Lab contributors: Bill Clemens, Jim Follkie, Tom Goodman, Teena Harris, Chad Johnson, Ashley Mitchell, Pete Kushnick, Scott Williams


Outline

- Long march of SRF technology and great success of new cavity shapes
- Struggle for new shape demonstration in 9-cell cavities
- LSF emerged as best cavity shape and its potential for high gradient & high efficiency
- Moving forward, JLAB chose LSF+LG Nb approach on ground of GDE SRF success
- Single-cell LSF+LG Nb cavities
- LSF5-1 first multi-cell LSF and its first tests
- Conclusion and outlook

The Long March of SRF Technology

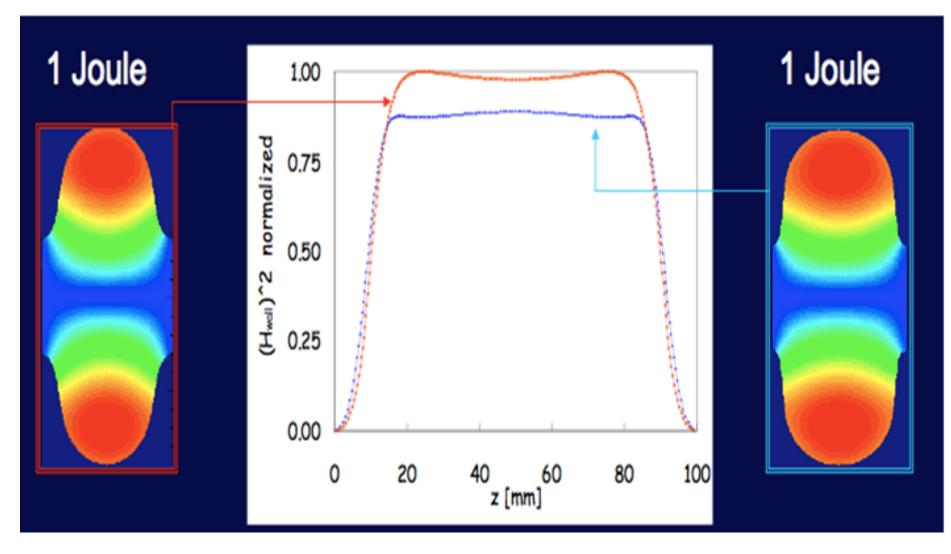
L-band SRF Linear Accelerator Technology and Impact to Nuclear, Elementary Particle, and Photon Sciences


Breakthrough brought by new cavity shapes

- RE @ Cornell
- LL/ICHIRO @ KEK

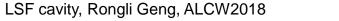
3

The Idea (as viewed though a "phenomenological law for gradient")


Tune down H_{pk}/E_{acc} for higher E_{acc} as $H_{rcit, RF}$ is a fundamental material property setting limit

Decades of R&D + hundreds of M\$ investment*, solutions in addressing $(d, r, \beta_{MAG,})$ for high gradient SRF now converged and in hand : Hi purity Nb, EBW, EP, LTB

* Kneisel, Hot Topics, SRF2009.



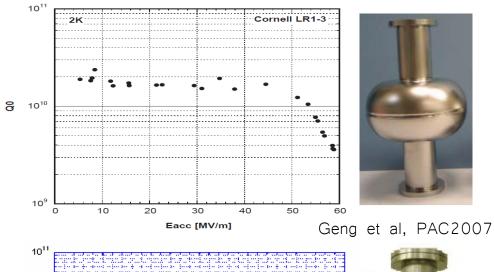
The Approach

Enlarge equator to "dilute" surface RF current hence to Lower H_{pk}

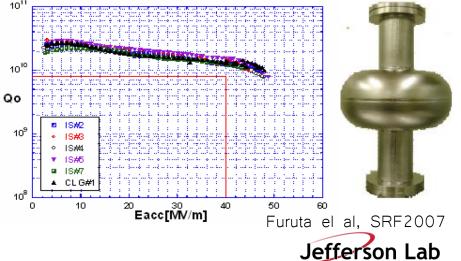
Courtesy J. Sekutowicz

The Early Shape-Players in 2002-2003 and Great Success

		TESLA	Low-loss/ICHIRO	Re-entrant	
frequency	MHz	1300	1300	1300	
Aperture	mm	70	60	60	
Epk/Eacc	-	1.98	2.36	2.28	
Bpk/Eacc	mT/(MV/m)	4.15	3.61	3.54	

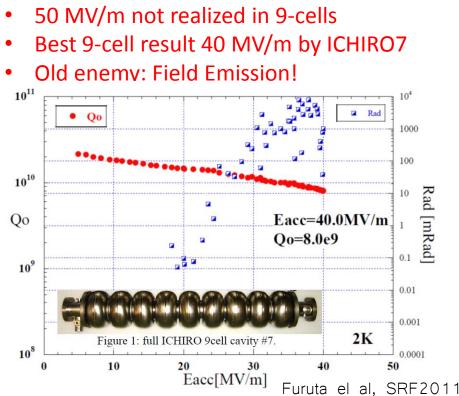

\succ RE

- Shemelin, Padamsee, Cornell Internal Report, SRF020128-01 (2002). .
- Shemelin, Padamsee, Geng, NIM-A496(2003)1. .


LL

- Sekutowicz, Kneisel, Ciovati, Wang, JLAB Tech Note, TN-02-023 (2002). .
- Sekutowicz, Talk 1st ILC Workshop at KEK, Japan, Nov. 13-15, 2014. .
- **TESLA**
 - Haebel et al., Proc. HEACC vol.2, Hamburg (1992). .
 - Proch, Proc. 6th SRF Workshop, Newport News, VA, USA (1993). ۰

Lowering H_{pk}/E_{acc} by 13-15% E_{acc} 50-60 MV/m Achieved



LSF cavity, Rongli Geng, ALCW2018

The Struggle in Extending Success to Full-Scale 9-Cell

		TESLA	Low-loss/ICHIRO	Re-entrant
frequency	MHz	1300	1300	1300
Aperture	mm	70	60	60
Epk/Eacc	-	1.98	2.36	2.28
Bpk/Eacc	mT/(MV/m)	4.15	3.61	3.54

- H_{pk}/E_{acc} 13-15% reduction in RE & LL at cost of 15-20% increase in E_{pk}/E_{acc.}
- Lessons learned: To materialize the full potential of new shapes, it is still required to fight against field emission, though it not being a fundamental limit.

The LSF Emerged as Best Shape

		TESLA	Low-loss/ICHIRO	Re-entrant	Low-surface-field	
frequency	MHz	1300	1300	1300	1300	
Aperture	mm	70	60	60	60	
Epk/Eacc	-	1.98	2.36	2.28	1.98	
Bpk/Eacc	mT/(MV/m)	4.15	3.61	3.54	3.71	
	$P_{c} = \frac{V_{c}^{2}}{R} = \frac{V_{c}^{2}}{R} = \frac{V_{c}^{2}}{R} = \frac{V_{c}^{2}}{R}$					
$P_{c} = \frac{V_{c}^{2}}{R_{a}} = \frac{V_{c}^{2}}{\frac{R_{a}}{Q_{0}}} = \frac{V_{c}^{2}}{\frac{R_{a}}{Q_{0}}} \times R_{s}$ Cavity material Cavity material						
G*R/Q	$\mathbf{\Omega}^2$	30840	37970	41208	36995	

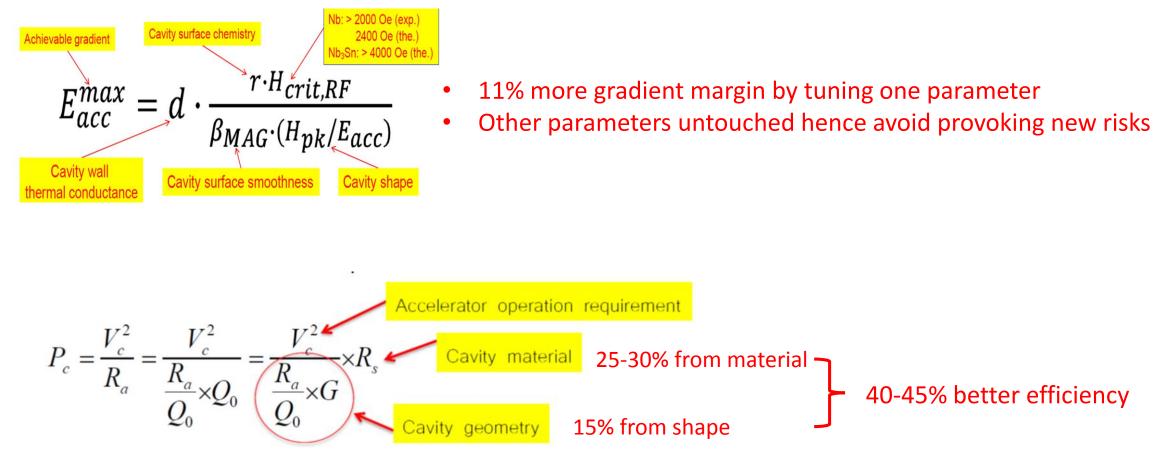
Lowering H_{pk}/E_{acc} by 11% while preserving the same E_{pk}/E_{acc}

Li, Adolphsen, LINAC08 (2008).

All new shapes offer additional benefits in higher efficiency 20-34% saving in power dissi.

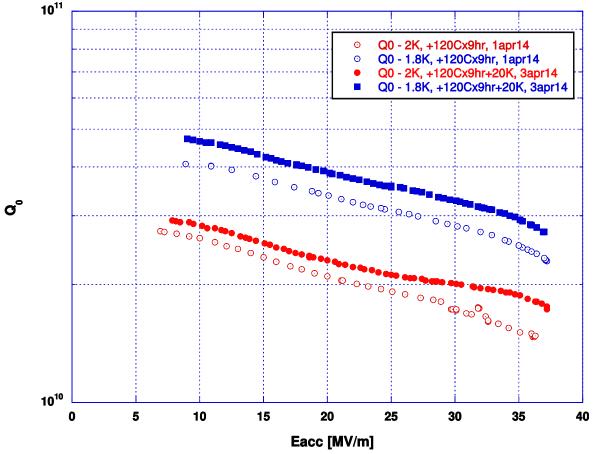
Jefferson Lab

JLAB Chose LSF + LG Nb as the New Approach in 2013


- ILC S0 program concluded and TDR published in 2013
 - 90% yield vertical qualification test at avg gradient 35 MV/m (TESLA shape + FG Nb + EP).
- Moving forward, built upon successful outcome of SRF R&D under GDE, and in recognition of
 - Solid knowledge in cell shape properties.
 - 10-year's global experience in new shape cavity prototyping and testing since 2003.
 - Observed higher Q_0 in LG Nb cavities in 2011-2013 (its origin subsequently understood).
 - (See more in backup slides).
- A new approach chosen at JLAB for demonstrating higher SRF gradient and for help lower ILC project risk and cost via more gradient margin and better efficiency:

LSF shape + LG Nb (high purity) + EP

JLAB Selected LSF + LG Nb as the New Approach in 2013 (cont.)


 Goal: 11% more gradient margin and 45% better efficiency underpinned by selected shape & material

Single-Cell LSF LG Nb Cavities – Early Fruits Through a Collaboration

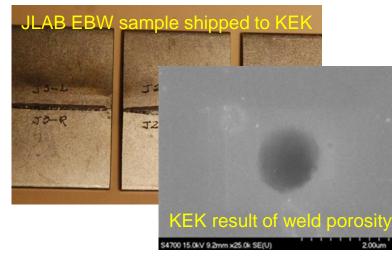
LSF1-3

- Two 1-cell LSF LG Nb cavities built and tested.
- Ningxia high-purity LG Nb.
- ~38 MV/m @ Q0 ~2E10 after surface BCP only.
- Surface EP now in progress to raise Eacc.

LSF cavity, Rongli Geng, ALCW2018

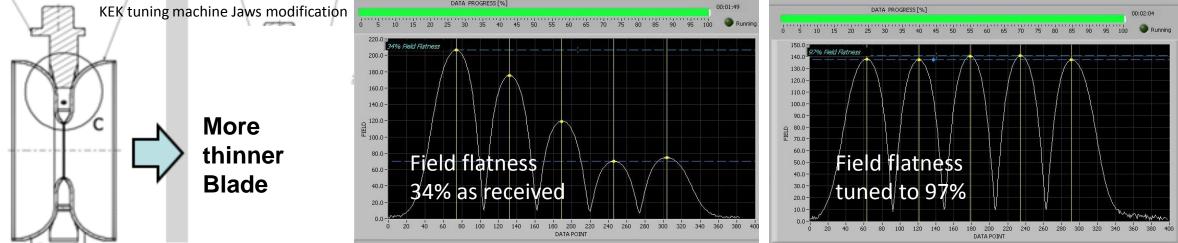

Collaborators: JLAB, PKU, SLAC

Geng et al., WEPWI013, IPAC2015 (2015)



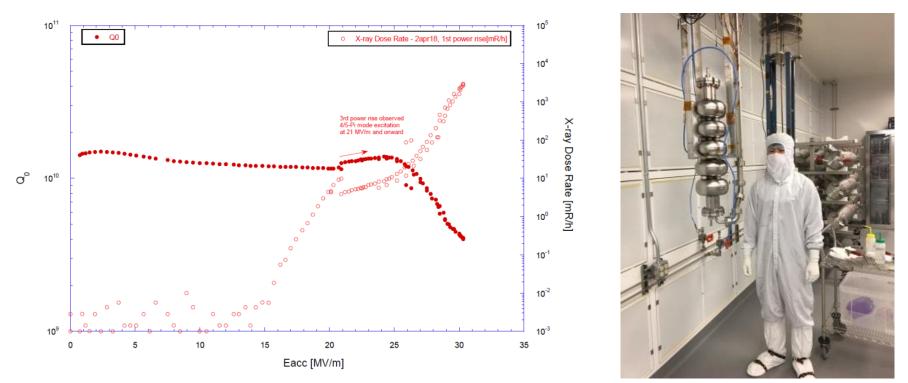
March 3, 2016 Birth of first multi-cell LSF cavity – enabled by US-Japan Collaboration

- A new pre-EBW cleaning recipe was established at JLab an outcome of weld porosity study of prior years (2014-2015) joint study between JLAB and KEK under US-Japan collaboration.
- The new recipe was first applied to the in-house fabrication of 1cell LSF shape cavities.
- The same recipe was applied to in-house fabrication of 5-cell LSF shape cavity LSF5-1.
- Fine-grain Nb (to allow comparison with TESLA & LL/ICHIRO).



LSF cavity, Rongli Geng, ALCW2018

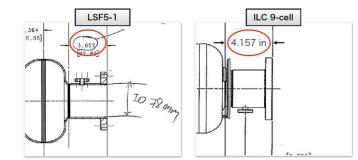
LSF5-1 Processing at KEK with Its Proven High Gradient Yield ILC-Style Recipe



LSF5-1 Processing and Preparation for First Vertical Test at JLAB in 2018

LSF cavity, Rongli Geng, ALCW2018

Results of First Cold Tests of LSF5-1


Hayato Ito, graduate student of SOKENDAI/KEK at JLAB for prep and testing in January -February 2018

- Pressure detuning df/dp -186 Hz/torr; Lorentz force detuning coeff. -4.4 Hz/(MV/m)².
- Highest Eacc achieved 30 MV/m.
 - Limited by pass-band mode (4/5- π) excitation and evidence of end group heating.
- Gradient reach probed by pass-band technique: 33 MV/m end cells; 36-38 MV/m inner cells.
 - Pointing toward end group limitation as well.

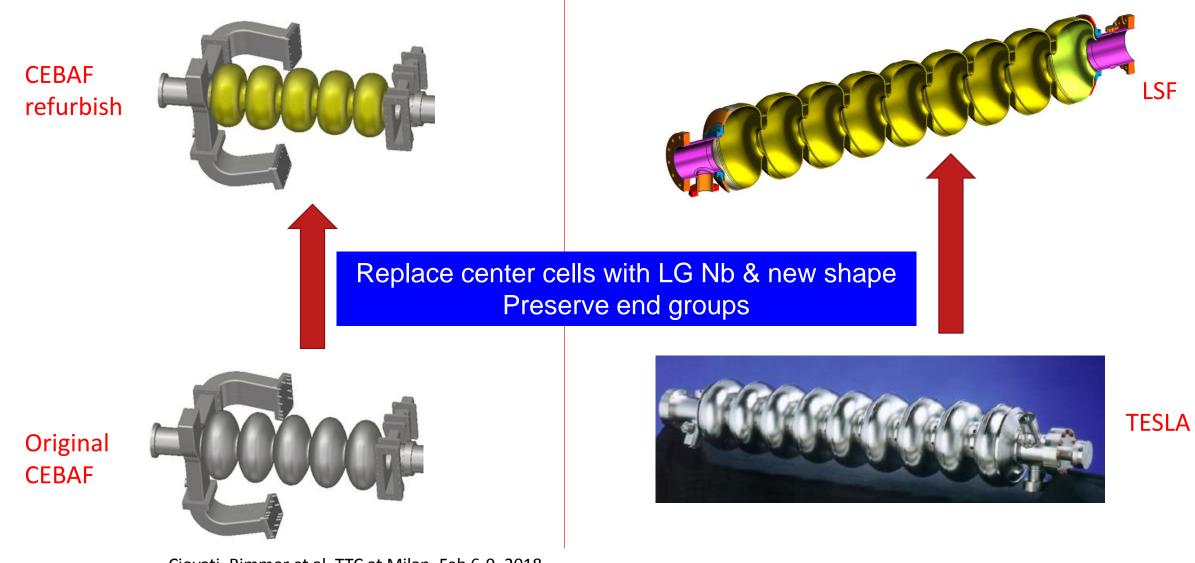
Understanding LSF5-1 First Tests and Actions for Next Steps

- High gradient reach of 36-38 MV/m by inner cells confirmed high quality equator weld & surface processing.
- 30 MV/m cavity gradient limitation by pass-band mode (4/5π) excitation and end group heating.
 - Field emitters in end cells (contaminants in test stand).
 - Missing the 0.5 inch length in beam tube has consequence!
 - Moving forward: Add 0.5 in ring in beam tube; restore test stand.
- Lorentz force detuning coeff. 10% better than ICHIRO7. —Validating design & fabrication of new stiffening components.
- Field flatness preserved within 3% from handling/evacuation —Indicating design efficacy in dealing LSF's small cell-to-cell coupling.
- Beam tubes wire EDM cut, EBW in progress, re-test coming.

4.157 - 3.657 = 0.5 inch

Conclusion and Outlook

- JLAB has chosen LSF shape +LG Nb as a new approach for advancing high gradient SRF to the next level. Steady effort since 2013. New boost from US-Japan collaboration.
- Two 1-cell LG & one 5-cell FG cavities are being tested. 9-cell (FG & LG) is next.
- While on the one hand, this LSF cavity development has been driven by the goal of shifting performance frontier beyond 50 MV/m in full-scale 9-cell cavities,
- There is, on the other hand, a second motivation of <u>shifting ILC project risk</u> in the right direction (fraction of quench limited cavities still large, see XFEL cav. data analysis*).
 —11% more margin in gradient.


* Walker, TTC at CEA Saclay, July 5-8, 2016.

This work is as well expected to <u>save ILC accelerator cost</u>, still a largely unfilled need.
 — 40-45% cryo loss saving underpinned by selected shape and material.

Last But Not The Least: Plug Compatibility

Ciovati, Rimmer et al, TTC at Milan, Feb 6-9, 2018.

Backup: 3 Key Elements Underpinning Perspective of LSF+LG Nb Approach

1. Solid knowledge and understandings.

✓ Shape properties, aperture compatibility w/ beam*.

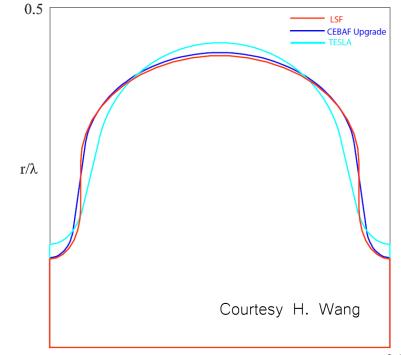
✓ Proven ILC-style TDR baseline surface processing.

✓ Origin of LG Nb's superior $Q_{0.}$

* Zagorodnov, Solyak, EPAC06, THPCH037 (2006)

2. Extensive experiences.

 \succ Cornell: ~10 year on RE.

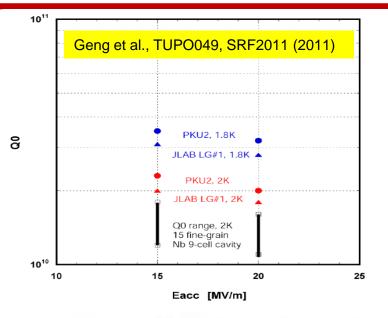

➤ KEK: ~ 10 years on LL/Ichiro.

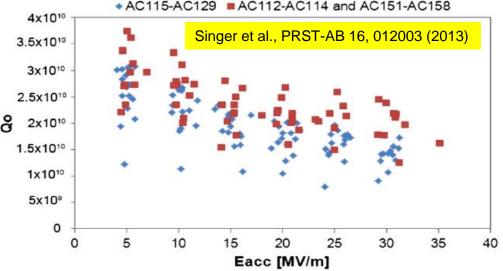
> JLAB: 15 years on LL (CEBAF) + 5 years LSF.

3. Actual test in real accelerator systems with beam.

- LL shape cavities: > 4 yr in 12 GeV CEBAF.
- LG Nb cavities:
 - > 8 yr LG 9-cells (2 EA) in FLASH.
 - > 3 ys LG 9-cells (2 EA) in PKU FEL (replacing now w/ two new 9-cells).
 - > 1 ys LG 5-cell (2 EA) in CEBAF C50-13 (module w/ 8xLG in progress).

		TESLA	Low- loss/ICHIRO	Low-surface- field	CEBAF upgrade LL
frequency	MHz	1300	1300	1300	1497
# of cells	-	9	9	9	7
Aperture	Mm	70	60	60	53
Epk/Eacc	-	1.98	2.36	1.98	2.17
Hpk/Eacc	mT/(MV/m)	4.15	3.61	3.71	3.74
Cell-cell	%	1.90	1.52	1.27	1.49
coupling					
G*R/Q	Ω^2	30840	37970	36995	36103


19

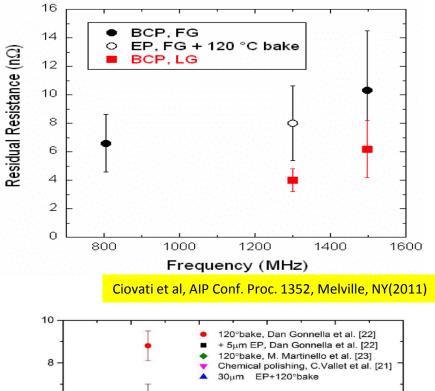

0

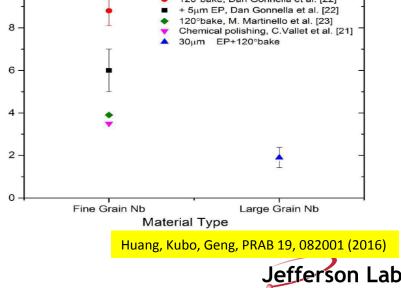
 $z/(\beta\lambda)$

Backup: A Few Words About LG Nb

- The idea of LG Nb introduced at JLAB in 2004.
- Subsequent world-wide development reviewed by Kneisel et al, NIM-A 774 (2015)133-150.
- LG Nb also known as "ingot Nb".
- Initial motivation of LG Nb: save cost, arising from the effect of eliminating steps in producing Nb sheets by ingot slicing.
- Initially high purity (high RRR), now active work on "not so high purity" (medium- or low- RRR).
- <u>LG Nb in this talk referred to high-purity for best</u> insurance of high gradient, as is well understood.
- Observation of higher Q₀ at high gradient as compared to FG Nb similarly processed with ILCstyle TDR baseline recipe and tested in identical facilities at JLAB and DESY.

Backup: A Few Words About LG Nb (cont.)


- The reason for observed higher Q₀ is understood.
 - ✓ Lower residual resistance
 - Ciovati, Kneisel, Myneni, AIP Conference Proceedings, 1352, Melville, NY(2011).
 - Deeper understanding for lower residual resistance: lower sensitivity to trapped flux


➢ Huang, Kubo, Geng, PRAB 19, 082001 (2016).

 Further observation of stable surface resistance in LG Nb cavities against repeated quench

-Geng, Huang, WEPMR033, IPAC2016 (2016).

- Very large Q₀ at 1.8 K, optimal temperature at 1.9K for LG Nb?
 - -Singer et al., AIP Conference Proceedings, 1352, Melville, NY(2011).
 - Kostin, Sekutowitz, TTC at Milan, Feb 6-9, 2018.

r_{fi}[nΩ/μT]