

High-Q and high-gradient research updates from Cornell University

Dr. Mingqi Ge
On behalf of the SRF group of Cornell University

ALCW2018

Outline

- Vertical electropolishing (VEP) updates
- Bipolar electropolishing (BEP) updates
- Low-temperature doping updates

Outline

- Vertical electropolishing (VEP) updates
- Bipolar electropolishing (BEP) updates
- Low-temperature doping updates

Motivation of Vertical Electropolishing

- VEP has lower cost compared to horizontal EP;
- VEP requires smaller space for the system set-up;
- VEP'd SRF cavities have similar performance compared with HEP'd cavities.

Cornell VEP system for the ILC R&D project (high-gradient research)

Fig. 7.12 Vertical electropolishing: (a) schematic layout; (b) photograph of the setup [434].

Cornell VEP for 9-cell set-up

High gradient achievement of Cornell's VEP with 1.3GHz TESLA shape 9-cell.

Cornell Vertical electropolished 9-cell and single-cell SRF cavities achieved the ILC specification at 2K (Eacc >35MV/m with Qo>0.8e10)

Cornell VEP system for the LCLS-II R&D project (high-Qo research)

Figure 1: Cornell's VEP system.

 Q_0 vs E_{acc} performance and 2.0 K for all eight cavities. Errors are 20% on Q_0 and 10% on E_{acc}

The nitrogen-doped 9-cell and single-cell SRF cavities after VEP all achieved the LCLS-II specification (Eacc>16MV/m, Q0>2.7e10 at 2K)

Motivation of Ninja cathode development

(collaborated with KEK and Marui)

- Gravity effect causes VEP removal un-uniform;
- Cavity has to be flipped in a VEP;
- Ninja Cathode has been designed to compensate the removal un-uniform;

Ninja cathode development in collaboration with KEK and Marui

Cornell's and Marui's VEP Cathode

Figure 1: Images of Cornell VEP cathode (left); Marui's i-cathode Ninja type-I (middle), and single cell on the VEP stand at Cornell.

Surface preparation of NR1-2:

- NR1-2: CBP (30μm)+BCP (60μm)+800C baking (2hrs),
- Two VEPs (20μm each) using the Ninja cathodes of type-I & II,
- 120C baking (48hrs) and RF test,
- NR1-2 treated by the Ninja cathode achieved the ILC spec.
 Removal [um] (preliminary)
 Target Top half cell Bottom half cell

Figure 2: Optical inspection images of the equator weld seam on the RF surface; Cornell VEP (left), Ninja cathode type-I (right).

RF test results of NR1-2 at 2K.

Cornell cathode	Ninja type-I	Ninja type-II	
20	20	20	
24	36	29	
14	20	18	

Outline

- Vertical electropolishing (VEP) updates
- Bipolar electropolishing (BEP) updates
- Low-temperature doping updates

Motivation of Bipolar-EP

- Regular EP contains HF.
- HF is toxic!

Regular EP will require >10,000 liters HF acid for ILC project (~8000 1.3GHz 9-cell SRF cavities).

Bipolar-EP development collaborated with Faraday Inc.

(HF-free EP technique using H₂SO₄ acid)

BEP setup of 9-cell and single-cell **SRF** cavities

- 1. an anodic forward pulse to grow an oxide layer on niobium surface,
- 2. voltage time off to dissipate the heat, remove reaction products, and replenishes reacting species;
- 3. a cathodic pulse with reversed voltage to remove the oxide layer on the niobium surface, thus eliminating the need for HF.

9-cell cavity BEP results

- Baseline test: cavity quenched at 22MV/m,
- BEP degraded gradient ~ 4MV/m,
- · Gradient was limited by quench and FE,
- Low Qo due to the oxide layer on surface.

Optical inspection images:

• 1st Run:

Surface coated with thick and golden oxide layer after 63um BEP of the 9-cell cavity.

- 2nd Run: BEP 8.5um, surface looks similar to the conventional EP surface;
- 3rd Run: BEP 7um, surface has light yellow layer.

	wt% H ₂ SO ₄	Anodic pulse	Time off	Cathodic pulse	Remov- al
1 st run	4%	4V, 200ms	800ms	10V, 200ms	63µm
2 nd run	9%	4V, 100ms	600ms	10V, 200ms	8.5µm
3 rd run	11%	4V, 100ms	600ms	10V, 200ms	6.9µm

Surface resistance analysis of the 9-cell cavity results

BEP on 9-cell	w/w% H2SO4	Q at 2K, 5MV/m	R _{bcs} at 2K	Rres
1 st run	4%	0.93e10	$14~n\Omega$	$16~n\Omega$
2 nd run	9%	1.26e10	15 n Ω	$8~n\Omega$
3 rd run	11%	0.53e10	10 nΩ	41 nΩ

- BCS resistance (R_{BCS}) is ~10-15 $n\Omega$, which is regular to a normal VEP
- Residual resistance (R₀) has large scattering from 8 to 41 $n\Omega$.

Single-cell cavity-string BEP results

Table 1: Summary of the $E_{acc, max}$ and Q_0 at 2K

	1st run; Baseline RF test		2nd run; RF test post BEP	
	E _{acc} max, Q ₀ at 2K		E _{acc} max, Q ₀ at 2K	
LTE1-13	20MV/m	1.4E+10	20MV/m	1.22E+10
LTE1-14	20MV/m	1.4E+10	41MV/m	5.2E+09
LTE1-15	22MV/m	1.4E+10	39MV/m	4.5E+09

- Baseline test: Eacc ~20MV/m limited by quench,
- BEP improved two single-cell Eacc up to ~40MV/m,
- Qo is flat when Eacc is between 5-30MV/m,
- high-field Q-slope started after 30MV/m.

Optical Inspection comparison

Cornell VEP

BEP

Post treatment study after BEP

- HF rinsing to remove bad oxide layer;
- 120C baking to improve Q

LET1-14:

- 1) 120C baking: Qo degraded at low, medium fields;
 1) no change at high fields. Eacc~ 40MV/m.
- 2) HF rinsing: Q₀ was improve at low fields; no 2) change at high fields. E_{acc}~ 40MV/m.

LET1-15:

- **HF rinsing:** Qo was improved at low, medium fields; no change at high fields. Eacc~ 40MV/m.
- **120C** baking: Qo was improve at low fields; no high-field Q-slope. Eacc quenched at 38MV/m.

Conclusions of BEP study

- Gradient of the BEP'd cavities can achieve ~40MV/m,
- Q0 varies from ~8e9 to 1.2e10 based on BEP parameters,
- The post treatments can reduce surface resistance of BEP'd cavity down to conventional VEP level.

Outline

- Vertical electropolishing (VEP) updates
- Bipolar electropolishing (BEP) updates
- Low-temperature doping updates

Motivation of Low-temperature doping

- High-temperature (800C) doping cavity has high-Q, but gradient of most cavities does not achieve the ILC specification;
- Low-temperature (120-160C) doping might be a solution for producing high-Q and high-gradient cavities.

Low-temperature doping at Cornell

• Low temperature baking (120 – 160 °C) in a low pressure nitrogen atmosphere results in 'Q-rise' and higher low-field Q_0 values

A. Grassellino et al., Unprecedented Quality Factors at Accelerating Gradients up to 45 MV/m in Niobium Superconducting Resonators via Low Temperature Nitrogen Infusion. arXiv:1701.06077.

P. N. Koufalis, D. L. Hall, M. Liepe, J. T. Maniscalco. Effects of Interstitial Oxygen and Carbon on Niobium Superconducting

Cavities. arXiv:161208291.

- Nitrogen diffuses only 2-5 nm into niobium at these temperatures
- Observed that carbon and oxygen diffuse significantly into niobium at 160 °C

One more thing...

Latest results of **2.6GHz** Nitrogen-doped single-cell SRF cavity

M. Martinello et al., SRF2017, Lanzhou, China, 2017.

- 2/6 Doping recipe;
- Q-value is comparable with a 1.3GHz EP'd cavity (non-doped);
- RBCS ~11 n Ω at 16MV/m;
- $R_0 \sim 8 n\Omega$
- Epk/Eacc = 1.86
- Bpk/Eacc = 4.25 mT/ (MV/m)

Acknowledgement

Cornell SRF group:

P. Bishop, H. Conklin, F. Furuta, T. Gruber, A. Holic,

J. Kaufman, P. Koufalis, G. Kulina, M. Liepe, J.

Maniscalco, T. Oseroff, R. Porter, J. Sears, S. Zeryck.

Thanks for your attention!

Surface resistance analysis of low T doping results

• R_{BCS} decreases with increasing E_{acc}; same effect seen in high-T nitrogen-doped cavities (caused by reduction of mean free path!)

