

Recent Progress in Plasma Cleaning at FNAL

Paolo Berrutti

Asian Linear Collider Workshop 2018 31 May 2018

Plasma Processing activities at FNAL

Plasma cleaning R&D is ongoing at FNAL for 1.3 GHz 9-cell, LCLS-II, cavities:

- Ne-Oxygen plasma SNS recipe will be used on LCLS-II cavities.
- Plasma ignition and plasma detection RF techniques need to be adapted/modified for 1.3 GHz cavities.
- 1-cell, 9-cell offline cavities processing and finally in-situ cryomodule cleaning.

1.3 GHz 9-cell in HTS

LCLS-II cryomodule

Motivations for in-situ plasma cleaning

Cavity	Cryomodule Max Gradient* [MV/m]	VTS Max Gradient [MV/m]	Usable Gradient** [MV/m]	FE onset [MV/m]	Cryomodule Q₀ @16MV/m*** Fast Cool Down	Q ₀ @16MV/m at VTS
TB9AES021	21.2	23.0	18.2	14.6	2.6e10	3.1e10
TB9AES019	19.0	19.5	18.8	15.6	3.1e10	2.8e10
TB9AES026	19.8	21.5	19.8	19.8	3.6e10	2.6e10
TB9AES024	21.0	22.4	20.5	21.0	3.1e10	3.0e10
TB9AES028	14.9	28.4	14.2	13.9	2.6e10	2.6e10
TB9AES016	17.1	18.0	16.9	14.5	3.3e10	2.8e10
TB9AES022	20.0	21.2	19.4	12.7	3.3e10	2.8e10
TB9AES027	20.0	22.5	17.5	20.0	2.3e10	2.8e10
Average	19.1		18.2	16.5	3.0e10	2.8e10
Total Voltage	154.6 MV		148.1 MV		- 129 MV/	

^{*} Administrative limit 20 MV/m

Acceptance = 128 MV

Courtesy of G. Wu

In-situ plasma processing of cryomodules will allow:

- Increasing maximum gradient
- Reducing radiation level
- Preserving high-Q

In-Situ:
NO NEED OF
DISASSEMBLY!!

^{**} Radiation <50 mR/h

^{***} TB9AES028 Q₀ was at 14 MV/m

Collaboration for LCLS-II Plasma Processing

- Successful experience with plasma processing
- Guidance for design and sample studies for LCLS-II plasma cleaning

- Simulation for applicability of ORNL plasma processing to LCLS-II cavities
- Use the system to perform cleaning in the accelerator tunnel

- Adapt the ORNL plasma cleaning technique to LCLS-II cavities and cryomodules
- Provide a system capable of efficiently process LCLS-II cavities/cryomodules

Project supported by DOE - Basic Energy Sciences (BES)

Plasma Cleaning for SRF Cavities at ORNL/SNS

- Oxygen plasma at room temperature (reactive environment with ions, e-, neutrals, radicals, etc.)
- Volatile by-products are formed through oxidation of hydrocarbons and pumped out and monitored (RGA)
- Mixture of Neon-Oxygen:

$$p{\sim}100 - 200$$
 mTorr, 2 % O_2

- $Ne \rightarrow \text{support gas}$ to create a stable glow discharge
- $oldsymbol{0}_2
 ightarrow \underline{\text{cleaning agent}}$, react with carbon forming volatile species

$$O_2 + C_{\chi}H_{\chi} \rightarrow CO + CO_2 + H_2O$$

Pump H₂O CO₂

M. Doleans et al. NIMA 812 (2016) 50-59

Plasma Processing at ORNL/SNS

Plasma process at ORNL/SNS focused on:

- > Reducing FE by increasing work function of cavity RF surface
 - Hydrocarbon contaminants observed on all Nb cavities
 - Hydrocarbons and adsorbates lower work function of Nb
- Enabling operation at higher accelerating gradients

$$j = \beta \frac{AE^2}{\Phi} e^{-B\frac{\Phi^{3/2}}{\beta E}}$$

$$dj = 0$$

$$\frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\Phi}{\Phi}$$

J: current density

E: surface electric field

Φ: work function

 β : enhancement factor (10s to 100s)

A,B: constant

Increasing Φ by 10 % means increasing E_{acc} of about 15 %

M. Doleans et al. NIMA 812 (2016) 50-59

Eacc Increasing in SNS Cryomodule After Plasma Processing

SNS linac output beam energy is being increased

- One cryomodule has been processed offline
- Two cryomodules have been plasma processed directly in the SNS linac tunnel
- 20% Improvement of accelerating gradients on average!

Plasma Ignition in LCLS-II Cavities with TM₀₁₀ modes

- Plasma ignited sequentially cell-by-cell
- **Dual tone excitation** to ignite plasma in the desired cell (M. Doleans, J. Appl. Phys. 120, 243301 (2016))
 - <u>2 fundamental modes mixed</u> to increase field amplitude in one cell (and its mirror images)
 - Off-resonance excitation introduce asymmetry in the cell amplitude

Plasma Ignition in LCLS-II Cavities with TM₀₁₀ modes

- Plasma ignited sequentially cell-by-cell
- **Dual tone excitation** to ignite plasma in the desired cell (M. Doleans, J. Appl. Phys. 120, 243301 (2016))
 - <u>2 fundamental modes mixed</u> to increase field amplitude in one cell (and its mirror images)
 - Off-resonance excitation introduce asymmetry in the cell amplitude

To obtain 10 kV/m, more power is needed comparing with SNS cavities:

- 9-cells instead of 6
- Larger mismatch at room T:

-
$$Q_0 = 1 \cdot 10^4$$
 for Nb

- SNS FPC:
$$Q_{ext} = 7 \cdot 10^5$$

- LCLS-II FPC: $Q_{ext} = 3 \cdot 10^7$
- For LCLS-II only 1% of the power is transmitted to the cavity

Cell #	Mode 1	Amp	dF (HBW)	Mode 2	Amp	dF (HBW)	Pf FPC (W)
1	8/9 pi	0.67	0	pi	0.33	1.5	160
2	8/9 pi	0.75	-1.5	3/9 pi	0.25	0	200
3	5/9 pi	0.75	0	8/9 pi	0.25	-1.5	130
4	7/9 pi	0.58	1.5	4/9 pi	0.42	1.5	280
5	7/9 pi	0.75	0	5/9 pi	0.25	0	80
6	7/9 pi	0.5	-1.5	4/9 pi	0.5	-1.5	310
7	5/9 pi	0.75	0	8/9 pi	0.25	1.5	130
8	8/9 pi	0.71	1.5	3/9 pi	0.29	0	200
9	8/9 pi	0.67	-1.5	pi	0.33	-1.5	160

Field Enhancement at the LCLS-II FPC

 Field enhancement at the coupler due to larger mismatch at room T and different FPC geometry

Suggest larger probability to ignite the plasma at the coupler

$$\beta = \frac{Q_0}{Q_{ext}} \approx 0.003 \rightarrow |\Gamma|^2 \approx 0.99$$

New Idea: Plasma Ignition Using HOMs I

- 1st pass-band modes capable of building electric field in each cell.
- Poor coupling at room temperature represents a limitation.
- Is there an efficient way of coupling power to the cavity at room temperature?

HOM couplers are designed to extract power at HOMs frequencies: Good coupling also at room temperature!

For the first monopole pass-band:

$$\beta = \frac{Q_0}{Q_{ext}} \approx 0.003 \rightarrow |\Gamma|^2 \approx 0.99$$

For the first two HOM pass-bands:

$$0.01 < \beta < 1.17 \rightarrow 0.006 < |\Gamma|^2 < 0.94$$

New Idea: Plasma Ignition Using HOMs II

Solution to avoid ignition of the FPC:

- → Use mixture of HOMs instead of the FPB modes to ignite plasma
- For the first pass-band only 1% of the power transmitted to the cavity
- Most dipoles of 1st and 2nd passband almost <u>all power gets to the cavity</u> (very good coupling at room T)
- Plasma will be still ignited sequentially cell-by-cell using HOMS

	CELL#		1	2	3	4	5	6	7	8	9
HOMs plasma ignition	MODE1	MODE#	2-4	2-6	2-2	2-5	2-1	2-5	2-2	2-6	2-4
			0.51	0.89	0.94	0.4	1	0.9	0.84	0.76	0.5
	MODE2		1-6	1-4	1-3	1-4	-	1-3	1-4	1-9	1-4
		AMP	0.49	0.11	0.06	0.6	-	0.1	0.16	0.24	0.5
	Pf T	OT W	4.71	8.97	6.35	5.89	2.97	7.78	6.02	7.23	7.28

New Idea: Plasma Ignition Using HOMs II

Solution to avoid ignition of the FPC:

- → Use mixture of HOMs instead of the FPB modes to ignite plasma
- For the **first pass-band** only 1% of the power transmitted to the cavity
- Most dipoles of 1st and 2nd passband almost <u>all power gets to the cavity</u> (very good coupling at room T)
- Plasma will be still ignited sequentially cell-by-cell using HOMS

CELL#		1	2	3	4	5	6	7	8	9
MODE1	MODE#	2-4	2-6	2-2	2-5	2-1	2-5	2-2	2-6	2-4
	AMP	0.51	0.89	0.94	0.4	1	0.9	0.84	0.76	0.5
MODE2	MODE#	1-6	1-4	1-3	1-4	-	1-3	1-4	1-9	1-4
	AMP	0.49	0.11	0.06	0.6	-	0.1	0.16	0.24	0.5
Pf 1	от w	4.71	8.97	6.35	5.89	2.97	7.78	6.02	7.23	7.28
	MODE1	MODE# AMP MODE# MODE#	MODE1 2-4 AMP 0.51 MODE2 AMP 0.49	MODE# 2-4 2-6 AMP 0.51 0.89 MODE# 1-6 1-4 AMP 0.49 0.11	MODE# 2-4 2-6 2-2 AMP 0.51 0.89 0.94 MODE# 1-6 1-4 1-3 AMP 0.49 0.11 0.06	MODE# 2-4 2-6 2-2 2-5 AMP 0.51 0.89 0.94 0.4 MODE# 1-6 1-4 1-3 1-4 AMP 0.49 0.11 0.06 0.6	MODE# 2-4 2-6 2-2 2-5 2-1 AMP 0.51 0.89 0.94 0.4 1 MODE# 1-6 1-4 1-3 1-4 - AMP 0.49 0.11 0.06 0.6 -	MODE# 2-4 2-6 2-2 2-5 2-1 2-5 AMP 0.51 0.89 0.94 0.4 1 0.9 MODE# 1-6 1-4 1-3 1-4 - 1-3 AMP 0.49 0.11 0.06 0.6 - 0.1	MODE# 2-4 2-6 2-2 2-5 2-1 2-5 2-2 AMP 0.51 0.89 0.94 0.4 1 0.9 0.84 MODE# 1-6 1-4 1-3 1-4 - 1-3 1-4 AMP 0.49 0.11 0.06 0.6 - 0.1 0.16	MODE# 2-4 2-6 2-2 2-5 2-1 2-5 2-2 2-6 AMP 0.51 0.89 0.94 0.4 1 0.9 0.84 0.76 MODE# 1-6 1-4 1-3 1-4 - 1-3 1-4 1-9 AMP 0.49 0.11 0.06 0.6 - 0.1 0.16 0.24

New Idea: Plasma Ignition Using HOMs (example)

5th of 2nd dipole pass band (2-5)

3th of 1st dipole pass band (1-3)

New Idea: Plasma Ignition Using HOMs (example)

Maximize field in cells #4 and #6

Creates the asymmetry needed to maximize the field only in one of the cell (in this case cell #6)

New Idea: Plasma Ignition Using HOMs (example)

5th of 2nd dipole pass band (2-5)

3th of 1st dipole pass band (1-3)

Field amplitude maximized in cell #6

Plasma tuning after ignition to increase homogeneity

Ignition in cell # 6

Plasma tuning after ignition to increase homogeneity

Ignition in cell # 6

After ignition, it is possible to pick a mode with uniform field distribution in the ignited cell and use it for plasma tuning. For example in cell #6: shut off 1-3, add 1-6 and shut off 2-5.

Set-up Plasma Ignition Studies for LCLS-II

Set-up Plasma Ignition Studies for LCLS-II

RF rack

Selective Plasma ignition in 9-cell cavities

Selective Plasma ignition in 9-cell cavities

- Plasma has been ignited in each cell of a 1.3 GHz cavity using HOMs
- The technique has been proven to work on two cavities: TB9NR011 and TB9NR014 both in 200 mTorr of Ar.
- Neon experiment to come soon along with first cleaning of a 1-cell

Conclusions

- Simulations have demonstrated that:
 - Plasma can be ignited in LCLS-II cavities using the fundamental pass band but lot of power is needed
 - Plasma ignition can be facilitated using HOM, reducing the risk of plasma ignition at the FPC
- Plasma successfully ignited in both 1-cell and 9-cell LCLS-II cavities back-filled with 200 mTorr of Ar, using HOMs
- Plasma after the ignition may be tuned to improve homogeneity
- HOMs ignition seems reliable and gave consistent results on 2 cavities.
- First experiment of plasma cleaning will follow soon!!

Conclusions

- Simulations have demonstrated that:
 - Plasma can be ignited in LCLS-II cavities using the fundamental pass band but lot of power is needed
 - Plasma ignition can be facilitated using HOM, reducing the

Thank you for your attention!

- Plasma after the ignition may be tuned to improve homogeneity
- HOMs ignition seems reliable and gave consistent results on 2 cavities.
- First experiment of plasma cleaning will follow soon!!

