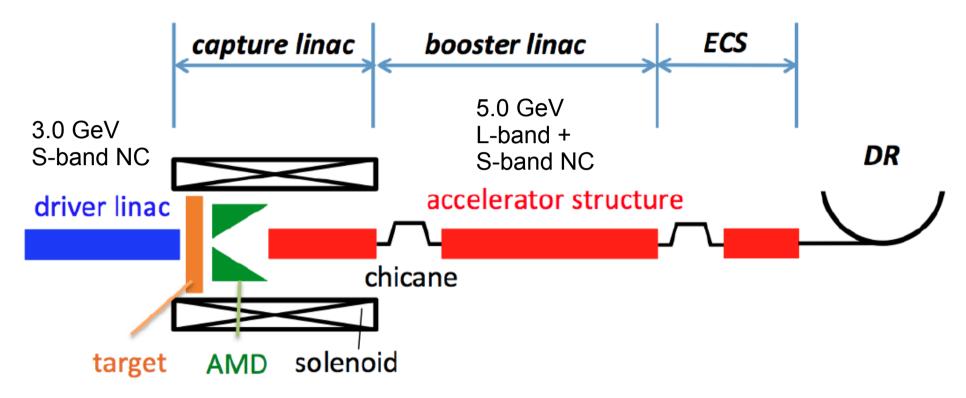
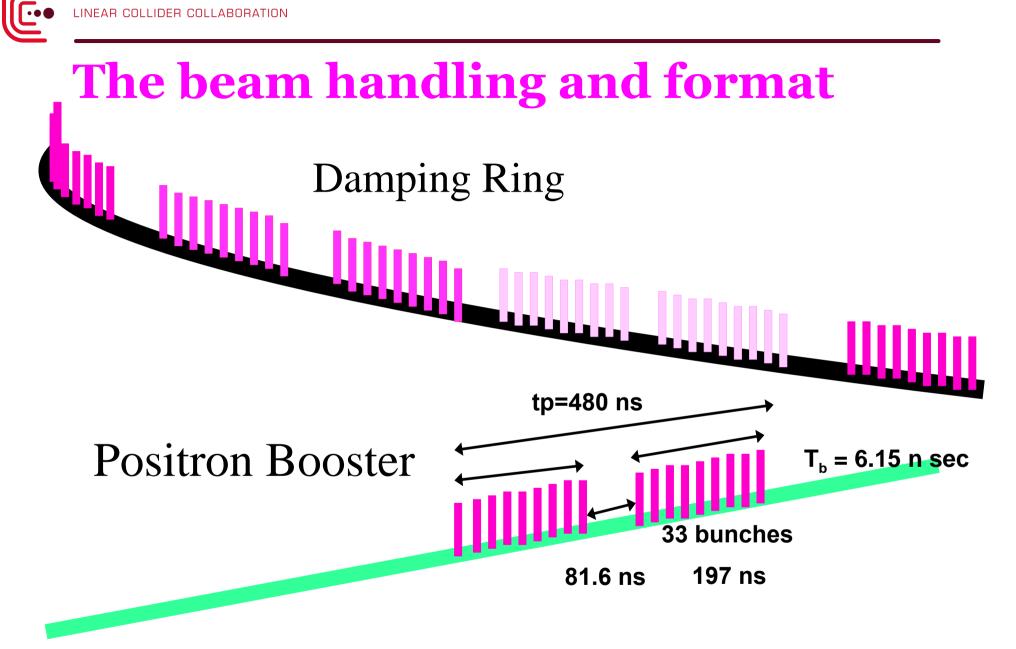
A Status report of E-driven ILC Positron Source

ALCW2018 at Fukuoka, Japan Masao KURIKI (Hiroshima University)

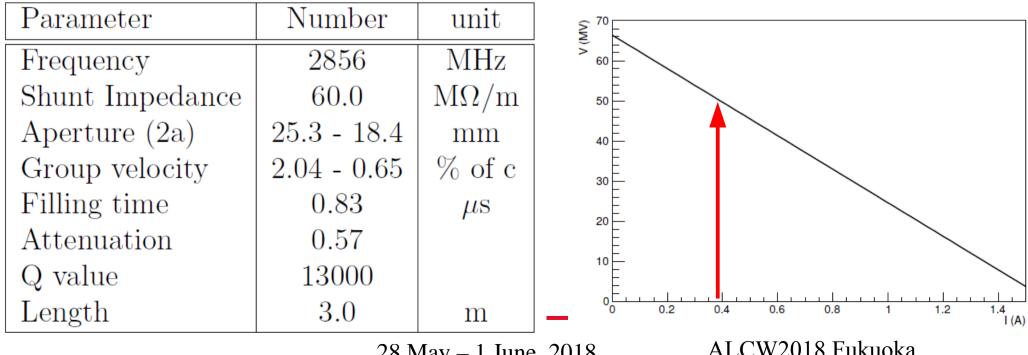


Introduction


- The design of the ILC positron source based on off-the-shelf components has been established.
- Optimization for 250 GeV parameter as
 - Small beam size on target for better yield. (3.5 2.0 mm rms)
 - Lower drive beam energy for less cost. (4.8 3.0 GeV)
 - Consider only the nominal parameter.
- A margin for the booster energy is now reserved.

E-driven ILC Positron Source

- · 20 of 0.48us pulses are handled with NC linacs operated in 300Hz.
- 100 of 300 pulses are actually fired.



28 May – 1 June, 2018

Electron Driver

- 3.0 GeV Electron beam with 2.0 mm RMS beam size at the target.
- 2.4 nC bunch charge is giving 0.39 A beam loading.
- S-band Photo-cathode RF gun for the beam generation.
- 80 MW klystron-modulator drives 2 structures.
- The effective input power for each tube is 36 MW. 50 MV/tube.

28 May – 1 June, 2018

KEK CONCEPT DESIGN 80MW S-band October 6, 2017 RF & Solid State Modulator PARAMETERS

Fig: K400-platform

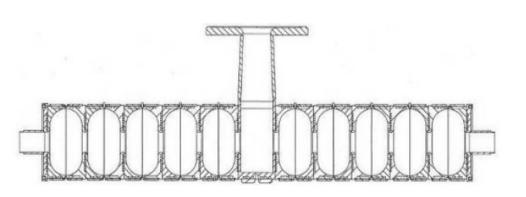
OPTIONS: Integration of ...

- Solenoid Power Supply
- Ion Pump Power Supply
- RF Drive amplifier
- Cooling of Klystron (Collector, Body), Solenoid
- All diagnostics and interlocks

			6
Main Parameters	Value		Unit
RF Frequency	2600		MHz
RF Peak Power	80		MW
RF Average Power	0.2	(12)1	kW
Mod. Peak Power	143		MW
Mod. Average Power	1.4	(86)1	kW
Klystron Voltage	382		kV
Klystron Current	375		А
RF Pulse width (top)	0.5		μs
Pulse Repetition Rate	5	(300)	Hz
Pulse-to-Pulse stability	<15		ppm

¹ Corresponding to 300Hz operation

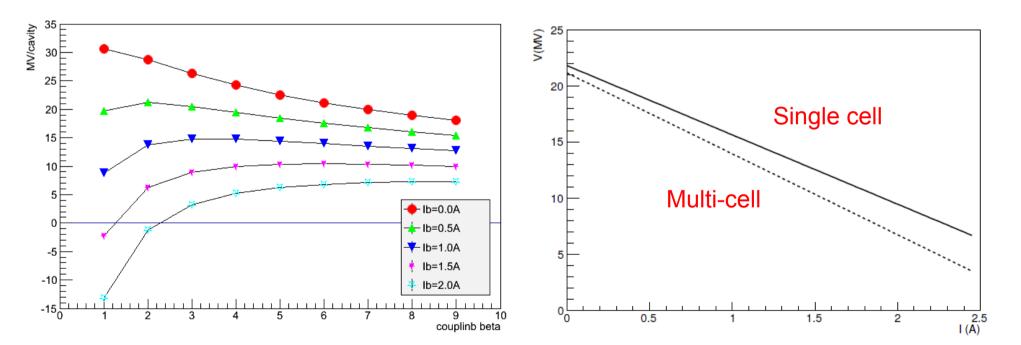
- 60 + 4 (spare) of 3m S-band TW structures for the acceleration. The energy is 3.2 GeV.
- The lattice design was based on ATF linac, 4Q + 2RF(S) up to 600 MeV, 4Q+4RF(S) for other.


Lattice	# of cell	Cell length(m)	Section length(m)		
4Q+2S	6	8.0	48.0		
4Q+4S	13	14.4	172.8		

• The total length is 235.2 + 20 m (RF gun + matching section).

Positron Capture Linac

- 36 L-band SW structures designed by J. Wang (SLAC) for the undulator capture section is employed.
- Two structures are driven by one 50 MW klystron.
- Surrounded by 0.5 T solenoid f eld.



Structure Type	Simple π Mode
Cell Number	11
Aperture 2a	60 mm
Q	29700
Shunt impedance r	34.3 MΩ/m
E ₀ (8.6 MW input)	15.2 MV/m

28 May – 1 June, 2018

- L=1.27 m (11 cells, L-band SW)
- R=34e+6 Ohm/m
- P₀=22.5 MW (50MW at klystron, 5MW wave guide loss).
- 10.36 MV/tube with beta=6.0.

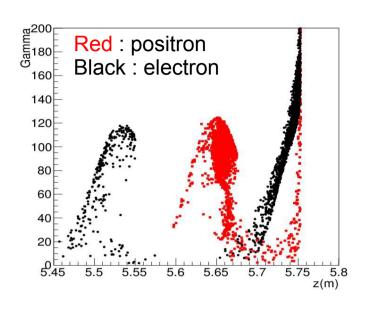
28 May - 1 June, 2018

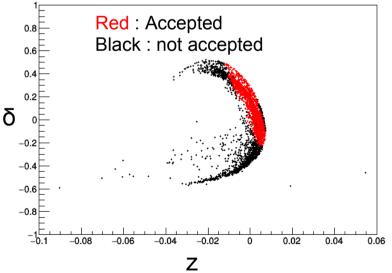
KEK CONCEPT DESIGN 50MW L-band October 6, 2017 RF & Solid State Modulator PARAMETERS

Fig: K300-platform

OPTIONS: Integration of ...

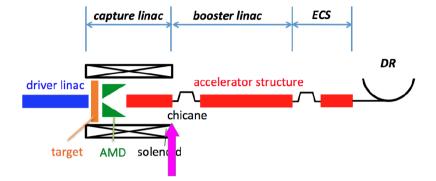
- Solenoid Power Supply
- Ion Pump Power Supply
- RF Drive amplifier
- Cooling of Klystron (Collector, Body), Solenoid
- All diagnostics and interlocks

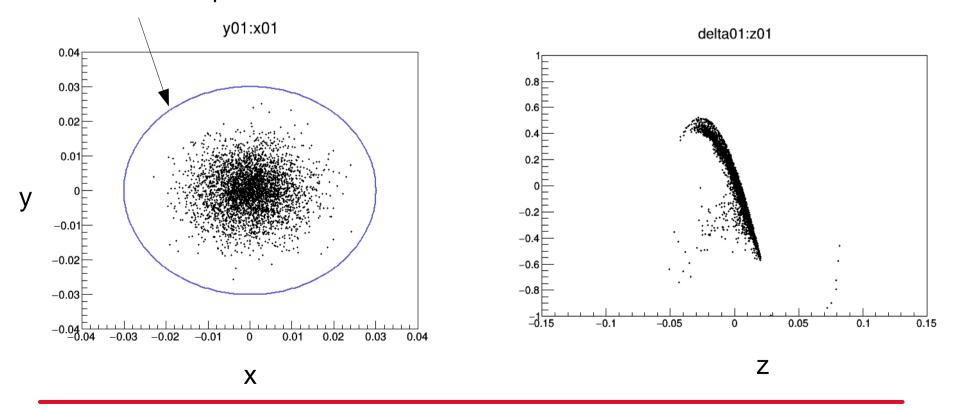

Main Parameters	Value		Unit
RF Frequency	1300		MHz
RF Peak Power	50		MW
RF Average Power	0.125	(7.5) ¹	kW
Mod. Peak Power	76		MW
Mod. Average Power	0.7	(42)1	kW
Klystron Voltage	271.7		kV
Klystron Current	282		А
RF Pulse width (top)	0.5		μs
Pulse Repetition Rate	5	(300)	Hz
Pulse-to-Pulse stability	<20		ppm


¹ Corresponding to 300Hz operation

Capture Simulation

- 1000 electrons on target by GEANT
 4.
- The positron is decelerated and bunched at the acceleration phase by phase-slipping.
- Positrons with a large z (longitudinal position) are not captured by the final acceptance, because the energy is determined by booster.
- The energy after the capture have less effect on the capture.
- The beam loading current is typically ~1.5 A, which is much less than the NLC design.

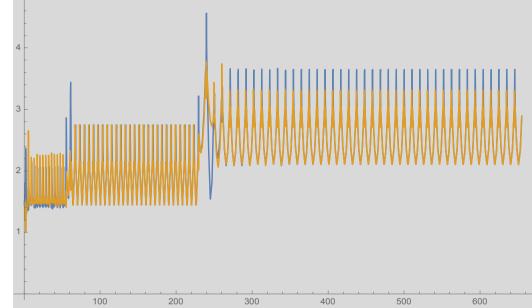



28 May - 1 June, 2018

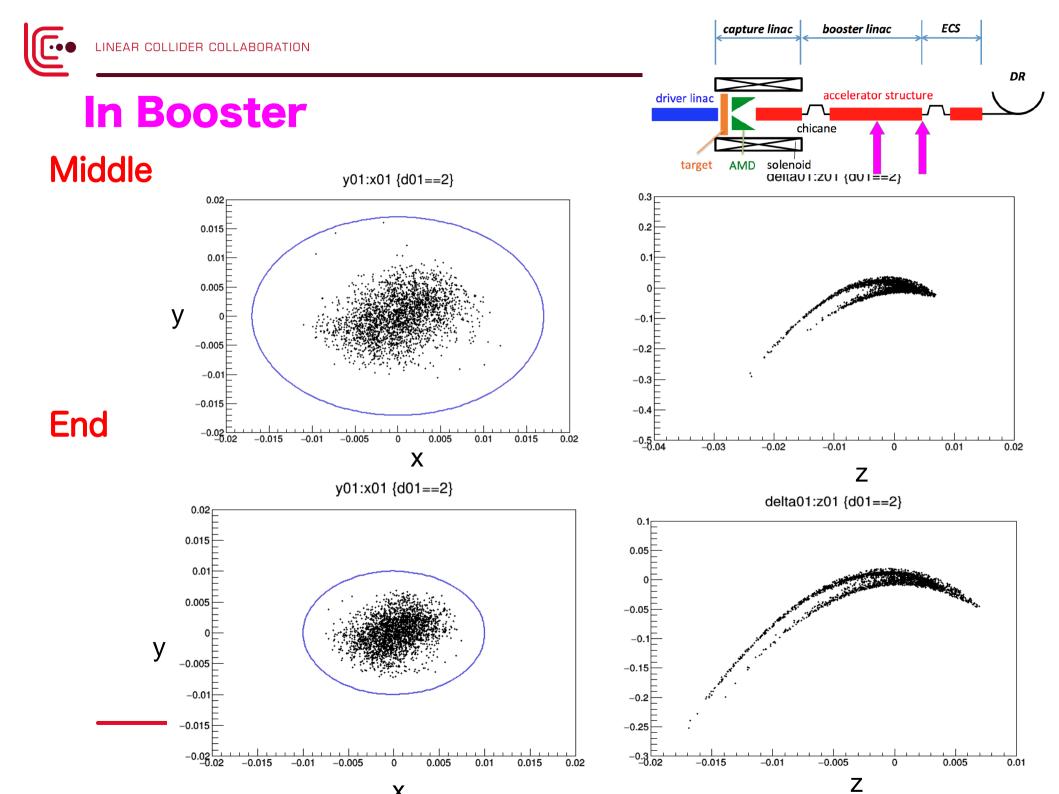
LINEAR COLLIDER COLLABORATION

At the end of capture linac

Accelerator Aperture

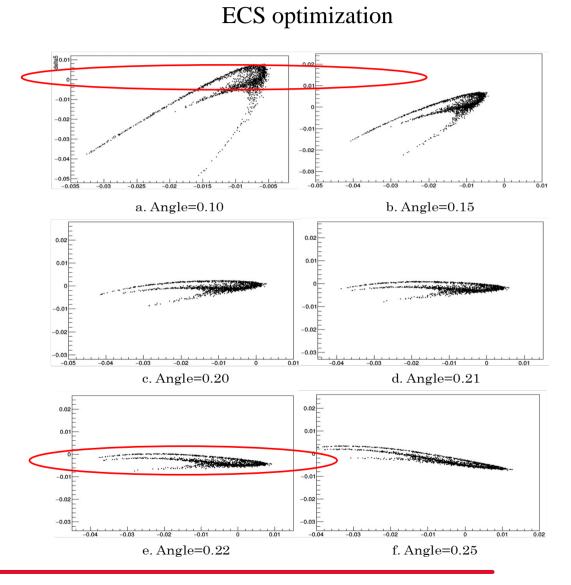


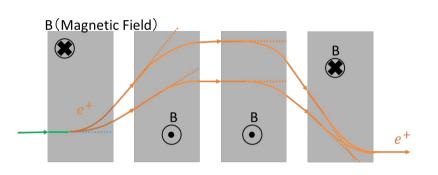
28 May – 1 June, 2018


Booster

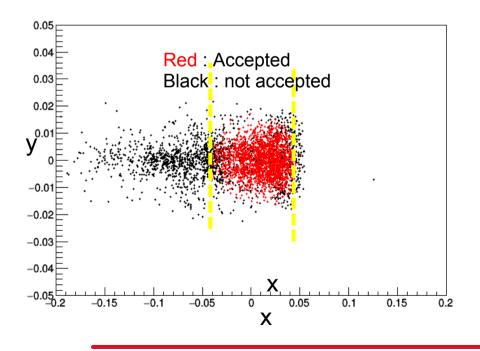
- A f ist half is implemented by Lband acc. and the last half is by Sband.
- 50MW L-band Klystron drives two L-band acc. (2a = 34 mm).
- 80MW S-band Klystron drives two S-band acc. (2a = 20 mm).

Lattice config.	N. of cells	Acc. energy	Energy at the exit	cell length	section length
4Q + 1L	14	$243 { m MeV}$	$493 { m MeV}$	3.8 m	53.2 m
4Q + 2L	29	$1009 { m MeV}$	$1502 { m MeV}$	$6.0 \mathrm{m}$	$174 \mathrm{~m}$
4Q + 4L	18	$1252 { m ~MeV}$	$2754 { m MeV}$	$10.4 \mathrm{~m}$	187.2 m
4Q + 4S	26	$2345~{\rm MeV}$	$5099 { m MeV}$	$10.4 \mathrm{~m}$	$270.4~\mathrm{m}$


28 May – 1 June, 2018


ECS Section

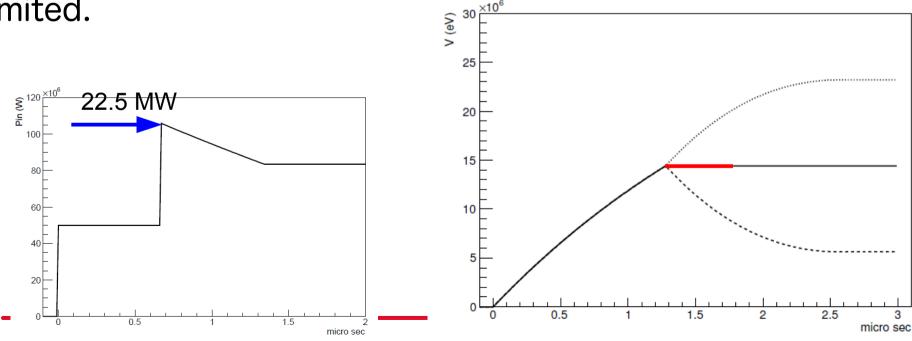
- ECS design R₅₆=1.2m and R₆₅=-0.8.
- Required voltage is 122 MeV, 3 tubes are enough.
- We need an additional RF to compensate the beam loading.



28 May - 1 June, 2018

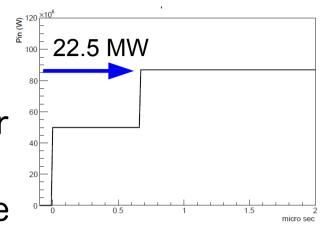
Limit the current

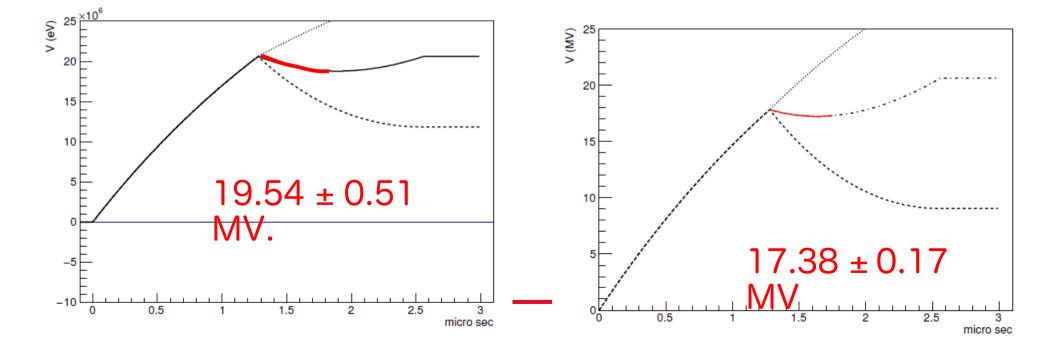
- Removing "rude positrons" by collimation in the capture section (22mm rad.) and in the chicane (100 mm width) was studied.
- The rude positrons are decreased 15% with 7% less yield.


Config.	I _{blcap} (A)	I _{blbstr} (A)	Yield
No cut	1.71	0.96	2.06
Cap.	1.56	0.93	2.04
Chic.	1.71	0.93	2.04
Cap. + Chic.	1.56	0.90	2.02

2m L-band TW structure (Positron Booster)

- 2m L-band (1298 MHz) designed for KEKB injector.
- Saw modulation:22.5 MW input with 0.78 A BL gives 14.41 MV/tube (2m)
- The energy spread is zero (ideal), but the voltage is limited.


Parameter	Number	unit
Frequency	1298	MHz
Shunt Impedance	47.2	$M\Omega/m$
Aperture (2a)	39.4 - 35.0	mm
Group velocity	0.61 - 0.39	% of c
Filling time	1.32	$\mu { m s}$
Attenuation	0.261	
Q value	20000	
Length	2.0	m



Step Modulation

- Step modulation: 19.54 ± 0.51 MV.
- If P_0 is optimized (lowered) for lower energy spread, 17.38 \pm 0.17 MV.
- The gradient depends on acceptable energy spread and we took 17.38 MV as our working assumption.

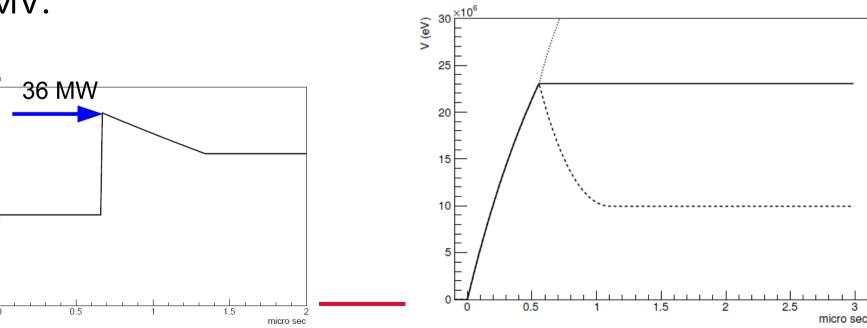
€¹²⁰ id

100

80

60

40


20

S-band TW accelerator (Positron Booster)

- 2m S-band (2856MHz) accelerator designed for KEKB injector.
- Saw modulation:22.5 MW input with 0.78 A BL gives 23.03 MV/tube (2m)
- Step modulation gives 29.42 ± 0.69 MV.

Parameter	Number	unit
Frequency	2856	MHz
Shunt Impedance	57.8	$M\Omega/m$
Aperture $(2a)$	24.28 - 20.3	mm
Group velocity	1.24 (av)	% of c
Filling time	0.507	$\mu { m s}$
Attenuation	0.333	
Length	1.959	m

Optimization

- Step modulation gives 29.42 ± 0.69 MV, the spread is more than 2%.
- P0 optimization does not work, because tf~tp.
- Instead, semi-Step-saw modulation was made with the peak power which is less than that for the perfect compensation.
- An example is 25.49 ± 0.23 MV.
- The accelerator voltage is determined by the acceptable energy spread.

25.49 ± 0.23 MV.

0.8

1.2 micro se

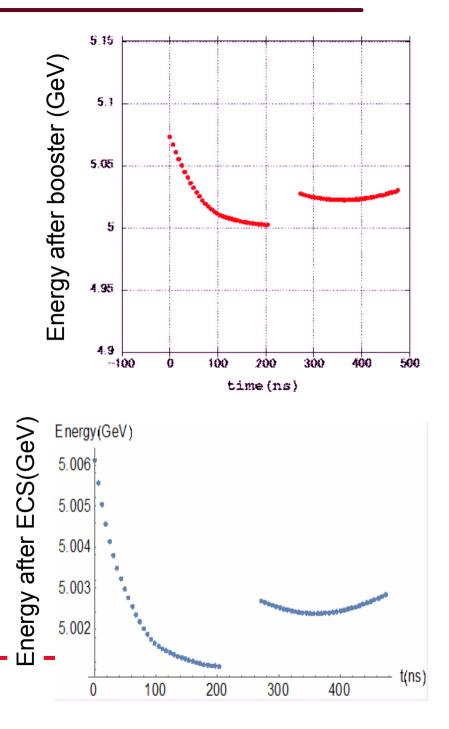
0.6

V (eV)

15

10

5


0.2

0.4

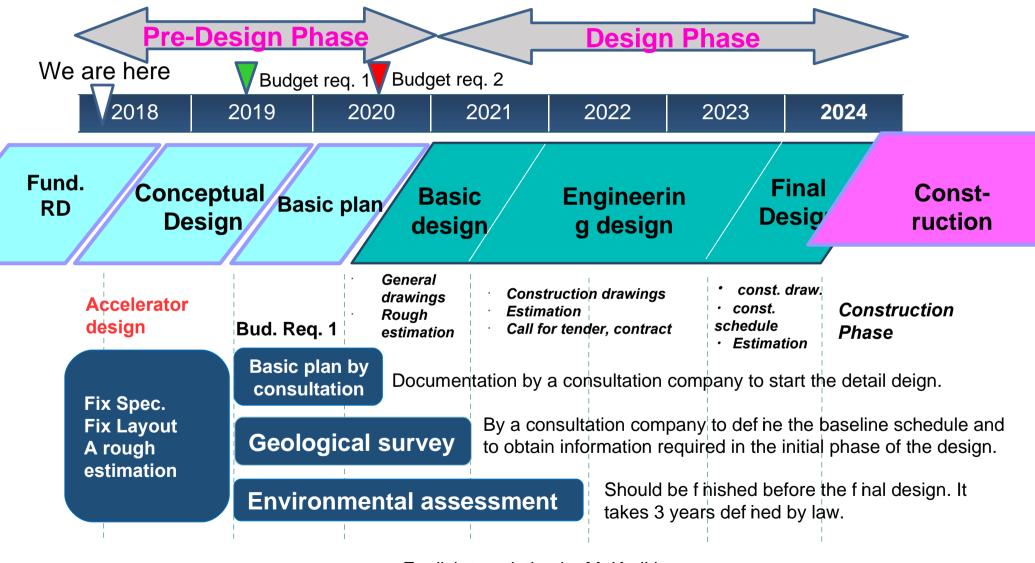
LINEAR COLLIDER COLLABORATION

Yield variation in a pulse

- By employing the quasi-perfect BL compensation, energy for each bunch in a pulse will be varied.
- The positron yield variation by the energy variation was studied.
- The bunch energy is varied 1.2% in a pulse, that corresponds to 0.1 % after ECS.

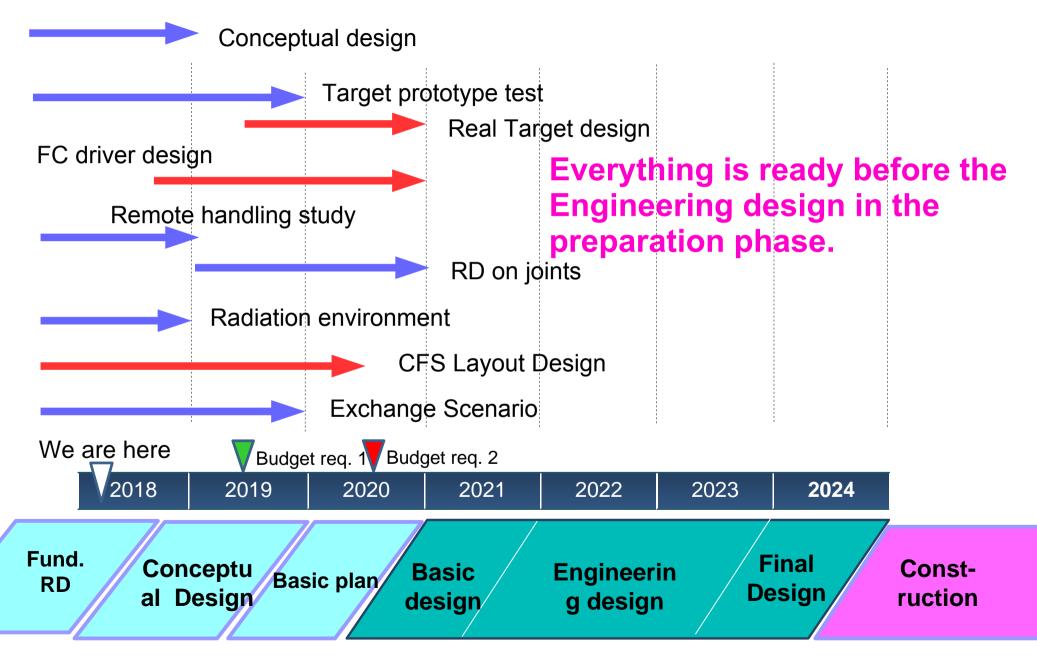
Total Length

Positron Booster 684.8 m


Target Capture Linac Chicane 63.0 m ECS 78.2m

Total : 1081.2 m

28 May – 1 June, 2018



An Expected Schedule on Pre- and Design Phase

English translation by M. Kuriki 23 The slide is originally made by Y. Miyahara (CFS Group).

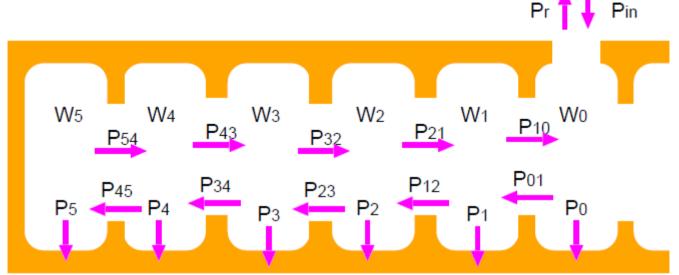
An Expected Schedule on Positron Source Design

Summary

- E-driven ILC positron source is optimized for 250 GeV ILC.
- Collimation at chicane (after capture linac) and cut by iris in the capture are effective to decrease the beam loading.
- The energy variation by the positron booster is evaluated with the quasi-perfect BL compensation.
- The yield variation due to the energy variation is 6% in full-width.
- The conceptual design should be fixed in this year.
- Everything can be ready before the engineering design in the preparation phase.

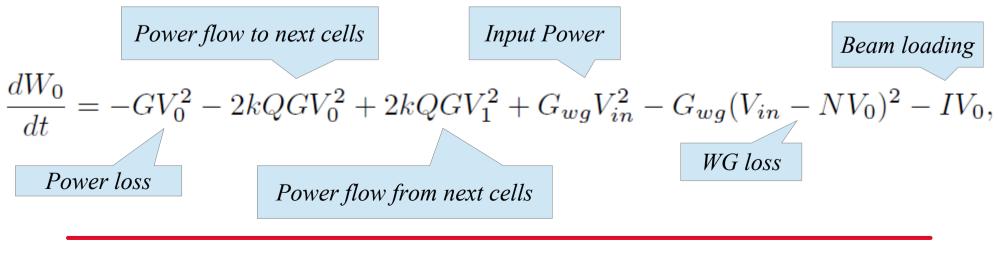
Beam Loading in SW Linac

Single Cell Model : Simple, but not realistic


The field in SW accelerator

$$V(t) = \frac{2\sqrt{\beta P_0 r L}}{1+\beta} \left| 1 - e^{-\frac{t}{T_0}} \right| - \frac{r I L}{1+\beta} \left| 1 - e^{-\frac{t-t_b}{T_0}} \right| \qquad T_0 = \frac{2Q}{\omega(1+\beta)}$$

The voltage RF is cons Beam Loading


$$t_{b} = -T_{0} \ln \left| \frac{I}{2} \sqrt{\frac{rL}{\beta P_{0}}} \right|$$
$$V_{0} = \frac{2\sqrt{\beta P_{0} r L}}{1 + \beta} \left| 1 - \frac{I}{2} \sqrt{\frac{rL}{\beta P_{0}}} \right|$$

28 May – 1 June, 2018

Multi-Cell Model : More realistic

Time differential of the energy of the center cell,

28 May – 1 June, 2018

Time differential of the voltage

$$\frac{dV_0}{dt} = -\left[\frac{(1+N\beta)\omega}{2Q} + k\omega\right]V_0 + k\omega V_1 + \frac{\omega\beta}{Q}V_{in} - \frac{\omega RI}{2Q}.$$

For the intermediate cells,

$$\frac{dV_1}{dt} = k\omega V_0 - \left(\frac{\omega}{Q} + 2k\omega\right)V_1 + k\omega V_2 - \frac{\omega RI}{Q}.$$

For the end cells,

$$\frac{dV_5}{dt} = k\omega V_4 - \left(\frac{\omega}{Q} + k\omega\right) V_5 - \frac{\omega RI}{Q}.$$

28 May – 1 June, 2018

[[•••

 $dt\mathbf{V}$

11 linear simultaneous differential equations

28 May – 1 June, 2018

$$\mathbf{R}^{\mathbf{T}}\mathbf{A}\mathbf{R} = \mathbf{B} = \begin{pmatrix} \lambda_{-5} & & & \\ & \ddots & 0 & \\ & & \lambda_0 & \\ & 0 & & \ddots \\ & & & & \lambda_5 \end{pmatrix}$$

$$\frac{dt\mathbf{R}^{\mathbf{T}}\mathbf{V}}{dt} = \mathbf{R}^{\mathbf{T}}\mathbf{A}\mathbf{R}\mathbf{R}^{\mathbf{T}}\mathbf{V} + \mathbf{R}^{\mathbf{T}}\mathbf{C}.$$

$$\frac{dt\mathbf{V}'}{dt} = \mathbf{B}\mathbf{V}' + \mathbf{C}',$$

Because **B** is diagonal, the equations for V' are 11 independent linear differential equations,

$$\frac{dV_i'}{dt} = \lambda_i V_i' + C_i',$$

28 May – 1 June, 2018

The solution for V' is

$$V_i'(t) = \tau_i C_i' \left(1 - e^{-\frac{t}{\tau_i}} \right),$$

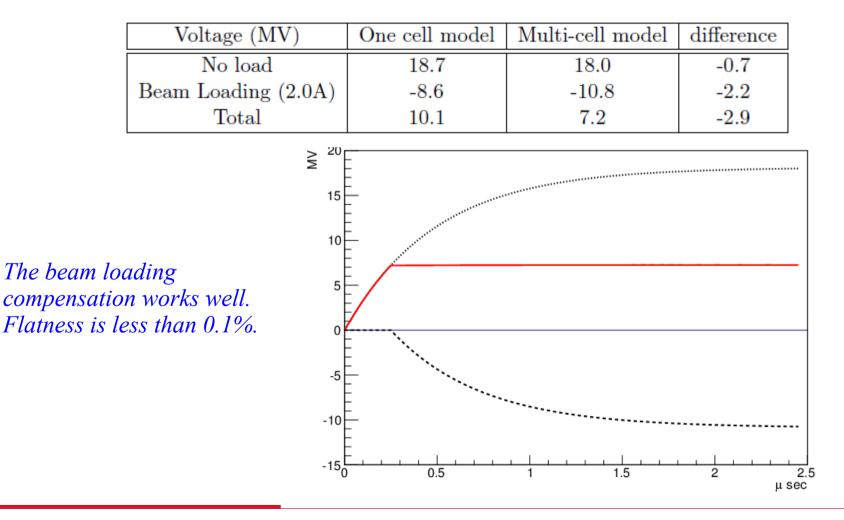
The solution for V is expressed as a linear sum of the solution for V'

$$\mathbf{V} = \mathbf{R}\mathbf{V}'.$$
$$V_i(t) = \sum_{j=0}^5 R_{ij}\tau_j C'_j (1 - e^{-\frac{t}{\tau_j}}).$$

28 May – 1 June, 2018

RF Mode and Beam Loading Mode

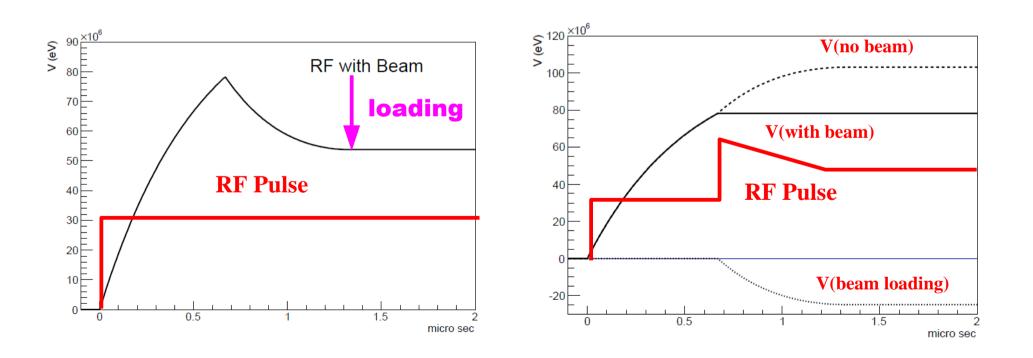
- The total acceleration voltage is given as sum of the RF mode and the Beamloading mode.
- They are not identical, but the dominant mode is common (tau=1.22 us).
- The RF mode has the second dominant mode, but nothing for BL. This gives the imperfection on the BL compensation, but the effect is not large.


DC mode

RF mo	de					BL mod	de				
τ	0.020	0.006	0.011	0.068	1.22	τ	0.020	0.006	0.011	0.068	1.22
cell -5	0.063	-0.003	-0.026	-0.232	2.078	cell 0	-0.000	0.000	0.000	0.004	-0.710
cell -4	-0.013	0.010	0.034	-0.149	2.043	cell 1	0.000	-0.000	-0.000	0.002	-0.698
cell -3	-0.074	-0.016	0.015	-0.013	1.975	cell 2	-0.000	0.000	-0.000	0.000	-0.674
cell -2	-0.045	0.021	-0.039	0.127	1.873	cell 3	0.000	-0.000	0.000	-0.002	-0.639
cell -1	0.038	-0.026	-0.002	0.222	1.740	cell 4	-0.000	0.000	0.000	-0.004	-0.594
cell 0	0.075	0.030	0.040	0.238	1.578	cell 5	-0.000	-0.000	-0.000	-0.004	-0.539
cell 1	0.038	-0.026	-0.002	0.222	1.740	cell 6	-0.000	0.000	0.000	-0.004	-0.594
cell 2	-0.045	0.021	-0.039	0.127	1.873	cell 7	0.00	-0.000	0.000	-0.002	-0.639
cell 3	-0.074	-0.016	0.015	-0.013	1.975	cell 8	0.000	0.000	-0.000	0.000	-0.674
cell 4	-0.013	0.010	0.034	-0.149	2.043	cell 9	0.000	-0.000	-0.000	0.002	-0.698
cell 5	0.063	-0.003	-0.026	-0.232	2.078	cell 10	-0.000	0.000	0.000	0.004	-0.710

Beam Loading Compensation

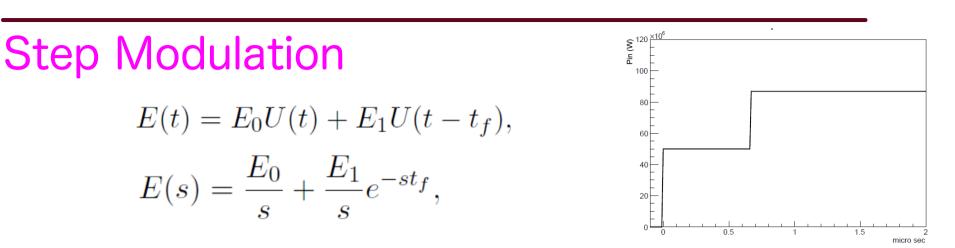
No big difference on the no-load voltage, but 30 % less on the heavyly loaded voltage,


28 May – 1 June, 2018

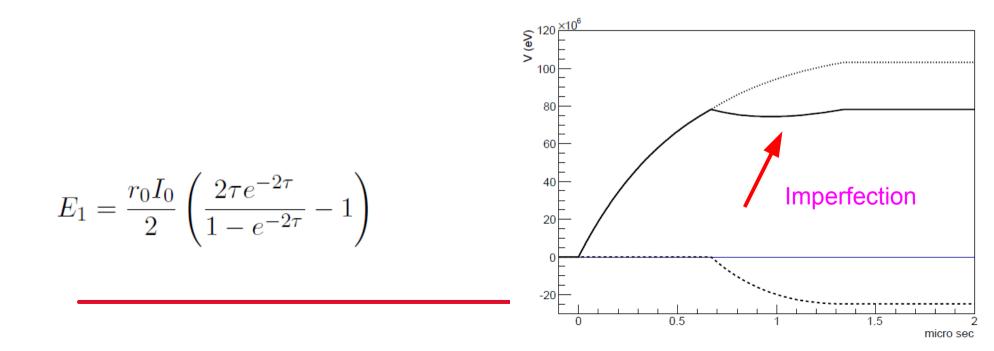
Beam-loading in TW Linac

- Transient beam-loading is compensated by Amplitude Modulation.
- Acceleration voltage by a f ht RF,

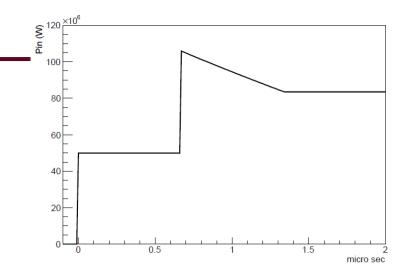
$$V(t) = E_0 L + \frac{r_0 L I_0}{2(1 - e^{-2\tau})} \left[\frac{\omega}{Q} e^{-2\tau} (t - t_f) - 1 + e^{2\tau - \frac{\omega}{Q}t} \right].$$

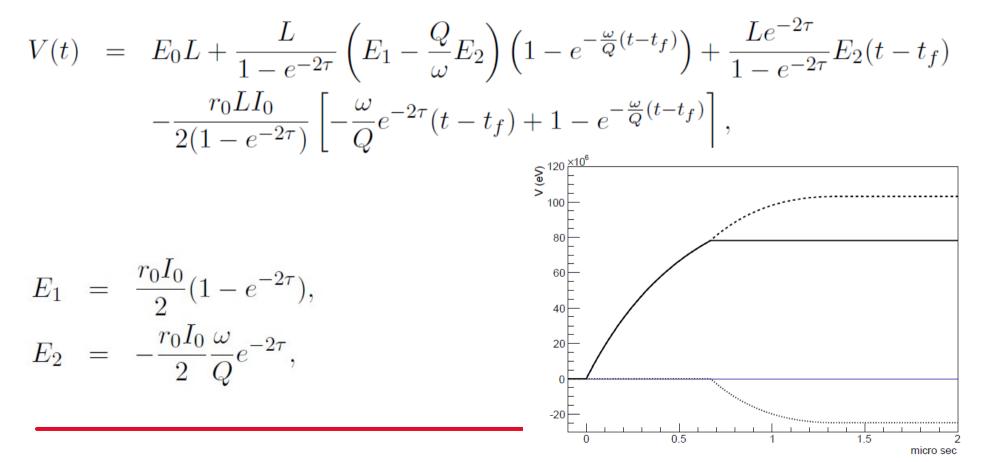

Beam Loading Compensation with AM

Laplace transformation of TW accelerator voltage V(s) is


$$V(s) = \frac{\omega L}{Q(1 - e^{-2\tau})} \frac{1}{s + \omega/Q} E(s) \left(1 - e^{-(s + \omega/Q)t_f}\right) - \frac{\omega r_0 L}{2Q(1 - e^{-2\tau})} \frac{I_0}{s^2} e^{-st_f} \left[1 - e^{-\frac{\omega}{Q}t_f} - \frac{\omega(1 - e^{-st_f - 2\tau})}{Q(s + \omega/Q)}\right],$$

where E(s) is the Laplace transformation of applied voltage (power). E(s) is determined to cancel s (t) dependence of V(s or t).

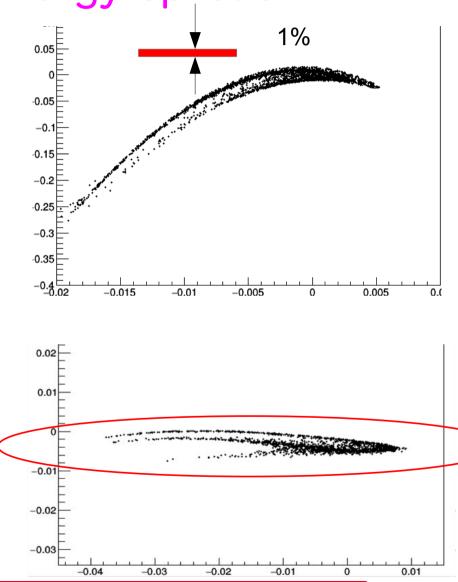

$$V(t) = E_0 L + \frac{LE_1}{1 - e^{-2\tau}} \left(1 - e^{-\frac{\omega}{Q}(t - t_f)} \right) - \frac{r_0 LI_0}{2(1 - e^{-2\tau})} \left[-\frac{\omega}{Q} e^{-2\tau} (t - t_f) + 1 - e^{-\frac{\omega}{Q}(t - t_f)} \right]$$



Saw Modulation

$$E(t) = E_0 U(t) + E_{1U}(t - t_f) + \frac{E_2}{t_f}(t - t_f) U(t - t_f)$$

$$E(s) = \frac{E_0}{s} + \frac{E_1}{s} e^{-st_f} + \frac{E_2}{t_f s^2} e^{-st_f}$$


Actual Compensation (Trade off)

- Saw modulation is ideal, but it requires a high peak power.
- Step modulation is a replacement, but it has an imperfection (energy spread).
- If $t_p \ll t_f$, an optimization for P_0 gives smaller energy spread.

What is the acceptable energy spread?

- z -d phase space distribution after booster has a larger energy spread by RF curvature.
- Imperfection of the compensation gives additional energy spread.
- The effect is not expected large, because the energy spread is compensated by ECS further.
- As our working assumption, 1% additional energy spread does not affect the yield.
- If larger energy spread is acceptable, the accelerator voltage is gained.

e. Angle=0.22