Positron Yield Calculations for the Undulator Based Source at 250 GeV CM Energy

Andriy Ushakov (University of Hamburg)

Asian Linear Collider Workshop 2018 (ALCW2018)

Fukuoka International Congress Center Fukuoka, Japan 28 May 2018

LINEAR COLLIDER COLLABORATION

A. Ushakov

e⁺ Yield Calculations at 250 GeV

- Positron source parameters and simulation tools
- Estimations of positron yield
- Peak energy deposition
- Radiation damage
- Summary

Source Parameters and Simulation Tools

- Photons are generated equally over 231 m magnet length helical undulator with 11.5 mm period and K ≤ 0.92.
- Ideal Kincaid model of undulator radiation is used.
- 126.5 GeV e⁻ beam is used for generation of undulator photons.
 126.5 GeV = [128 GeV (at beginning) + 125 GeV (at the end of undulator)]/2
- Distance between the middle of undulator and target is 401 m.
- Photon collimators (mask) in undulator and collimator upstream target are not used.
- Positron generation and capture is simulated in Geant4 application (PPS-Sim).
- Energy deposition is calculated in FLUKA.

Target and QWT Magnet Downstream Target

- Ti6Al4V target thickness is 7 mm.
- Target diameter (or width of rim) is 3 cm.
- Distance between rare side of target and front side of QWT is 8 mm.
- Aperture radius at the front side of QWT is 11 mm.
- Peak field of QWT is 1.04 T.

Positron Yield vs Undulator K Value

1.04 T QWT, 401 m distance from middle of undulator to target

Impact of Bunch Length Cut at 125 MeV on e^+ Yield Undulator K = 0.85, $B_{\text{OWT}} = 1.04$ T

Sum of normalized emittances $\varepsilon_{nx} + \varepsilon_{ny} < 70 \text{ mm rad}$

 $1.25~e^+/e^-$ at DR was estimated by Kuriki-san based on Andriy data at 125 MeV [Itako Linear Collider Workshop 2017]

A. Ushakov

Positron Yield for Different Peak Values of QWT 231 m undulator, K = 0.92, 7 mm target thickness

red line: $\Delta z_b = 14 \text{ mm}$

Positron Yield vs Target Thickness 231 m undulator, K = 0.92, 1.04 T QWT, $\Delta z_b = 14$ mm

Increasing of target thickness above 7 mm does not result in significantly higher positron yield

A. Ushakov

e⁺ Yield Calculations at 250 GeV

Source Parameters

Electron beam energy [GeV]	126.5
Undulator magnet lengt [m]	231
Distance from middle of undulator to target [m]	401
Undulator K value	0.92
Photon yield [photons/e ⁻]	1.95
Average photon energy [MeV]	7.6
Average photon power [kW]	72.2
rms photon spot size on target σ [mm]	1.45
Positron yield [e ⁺ /e ⁻]	1.56
Average power deposited in target [kW]	2.2
PEDD in target [J/(g pulse)]	59.8
PEDD in QWT [J/(g pulse)]	5.6

Average rms deflection angle (orbit kicks) of 125 GeV e⁻ due to undulator field errors is

5 μ rad

(estimated by Okugi-san)

Simplified model used in simulations

- Undulator was split in equal 66 peaces (number of cryomodules).
- Random angles ($\sigma = 5 \mu$ rad) were added to all photons generated in every of such peaces.
- Center of e⁻ beam was set to 0 at the beginning of cryomodule with 2 undulators (one undulator has 1.75 m magnet length).

Photon Spot Size on Target. K = 0.92

Positron Yield and Photon Spot Size on Target

Positron Polarization

Kicks have very small impact on e⁺ polarization

Energy Deposition in Rotated Target 5 µrad random kicks (rms)

Energy Deposition vs Z in Energy Deposition [J/(g pulse)] in middle of Pulse XY Plane 51 50 50.5 10 40 E [J/(g pulse)] [шо] ≻₄9.5 30 20 0.1 49 10 48.5 0.01 ٥ 2 3 5 6 7 8 9 0,3 0,4 0,5 -1 0.0 0.1 0,2 0,6 x [cm] z [cm]

(x = 0, y = 50 cm) - center of 1st bunch in pulse PEDD(5 μ rad) \approx 49.2 \pm 1.7 J/(g pulse) without kicks PEDD was \approx 59.8 J/(g pulse)

0,7

Note: target is stationary

PEDD(5 μ rad) \approx 6 J/(g pulse)

Radiation Damage [dpa/5000h]

5 μ rad random kicks (rms)

Peak damage of rotated target (\emptyset 1m) = 0.012 dpa/5000h Peak damage of QWT = 0.15 dpa/5000h

A. Ushakov

e⁺ Yield Calculations at 250 GeV

Summary

- 1.5 e⁺/e⁻ at 250 GeV CM energy can be achieved by applying 231 m undulator with K = 0.92 and 1.04 T QWT.
- 2.2 kW is deposited in 7 mm Ti6Al4V target from total average 72.2 kW photon power.
- 5 μrad random electron beam kicks (rms) due to undulator field errors result in comparison to ideal without kicks case in:
 - (a) decrease of e^+ yield from 1.56 e^+/e^- to 1.51 e^+/e^- ;
 - (b) increase of photon spot radius on target from 1.45 mm to 2.11 mm;
 - (c) decrease of PEDD in target from 59.8 J/(g pulse) to 49.2 J/(g pulse);
 - (d) increase of PEDD in QWT from 5.6 J/(g pulse) to 6 J/(g pulse);
 - (e) 0.012 dpa peak radiation damage of target after 5000 hours of irradiation;
 - (f) 0.15 dpa/5000h peak radiation damage of QWT.