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Introduction

Layout of CLIC at 3 TeV stage

Table: Beam parameters at the entrance of pre-damping ring

Parameters Value
E [GeV] 2.86

N 6.6 × 109

nb 312
∆tb[ns] 1
εx,y [µm] 7000
σz [mm] 5.4
σE [%] 4.5
frev [Hz] 50
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Introduction - The positron source sketch

Figure: Schematic layout of the main beam injector complex
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Review 3 TeV - CDR

Target parameters:

Primary electron energy: 5 GeV
Crystal thickness: 1.4 mm (0.4χ0)
Distance: 2 m
Amorphous thickness: 10 mm (3χ0)
The positron yield after target is 8.0

AMD - B(z) = B0
1+µz

B0 = 6 T, µ = 55m−1, L = 20 cm
The positron yield after AMD is 2.1

Pre-injector

Accelerating the positrons to 200 MeV
First decelerating and then accelerating
Inside the 0.5 Tesla solenoid
The positron yield after pre-injector is 0.9

Injector Linac

Accelerating the positron to 2.86 GeV
A bunch compressor is needed before the injector
The positron yield after injector linac is 0.7 (effective: 0.39)

From CLIC CDR

From BPM report by C. Bayar

Positron yield: 0.97
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Motivation

Main Changes:

The positron yield before the pre-damping ring has been improved from
0.39 to 0.971

The first energy stage of CLIC is 380 GeV

Rationale: improving performance & saving cost

Reduce the current of the primary electron bunch

Reduce the energy of the primary electrons bunch
3 GeV is considered.

How? - First, we need to improve the final positron yield as high as possible.

Start-to-end optimization
5 GeV
3 GeV

1C. Bayar, NIMA 869 (2017) 56-62
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Positron Generation Simulation - Channeling Process

There are two program to simulate the crystal channeling process

VMS by V. M. Strakhovenko (Budker-INP, Russia)
Used for simulation in CLIC CDR
Photon distributions with only 4 different electron energies are provided

FOT by X. Artru 2 (French National Centre for Scientific Research)
The primary electron energy and crystal thickness can be scanned

Energy distribution for photons Px distributions for photons

Discrepancy between two codes: 10% - 20%3

Comments from X. Artru:

The two codes are implemented rather different.

It is not simple to guess which is better.
2X. Artru, NIMB48 (1990) 278-282
3O. Dadoun, Journal of Physics: Conference Series 357 (2012) 012024
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Positron Generation Simulation

Procedure

1 FOT is used to generate photons in crystal tungsten (coherent &
incoherent bremsstrahlung, channeling)

2 These photons are set as primary particles in Geant4.

3 Standard EM process in Geant4 is simulated in crystal & amorphous
tungsten target.

FOT Geant4 Crystal Amorphous

Positron yield for CDR case: 7.2
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Peak Energy Deposition Density (PEDD)

Due to the channeling process, the PEDD in crystal is tiny.

The amorphous target is split to cells: 0.5 × 0.5 × 0.5 mm3

Standard electromagnetic processes are considered:
Pair production
Bremsstrahlung
Photon Electric effect
Coulomb Scatter
Annihilation
...

PEDD = Emax
Vcell×N

e−,sim
×

Ne+,train

positron yield
< 35J/g
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AMD simulation

Ideal magnetic field on axis: Bz(z , 0) = B0
1+µz

4

B0 = 6 T, µ = 55 m−1, Length = 20 cm

The simulation is done by RF-Track5 (very fast)

e
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Positron yield after AMD is 2.8

The parameters can be changed easily.

It is much easier to do the start-to-end optimization

4Off-axis magnetic field is got from CLIC-NOTE-465 by T. Kamitani & L. Rinolfi
5A. Latina, MOPRC016, Proceedings of LINAC2016
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Field Map - Need by RF-Track for tracking simulation

The field map for the 2π
3

traveling wave structure is calculated with CST 2017.

Wave length λ = 0.15 m

Traveling wave structure length: 1.5 m
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The standing wave solution from superfish is also used to construct the
traveling wave solution. These two methods are consistent with each other.
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Decelerating Parts

Positron yield is 1.03
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Accelerating Parts - The following 10 TWs

Positron yield is 0.92
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The previous simulation with parmela 6 gives positron yield 0.97.

The new result 0.92 is not different a lot from the previous one

We can begin the start-to-end simulation

6C. Bayar, NIMA 869 (2017) 56-62
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Injector Linac

We assume the transmission efficiency in the injector linac is 100%.

Ef = Ei + ∆E cos(2πωt), here t is the arrive time at the end of pre-injector
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Start-To-End optimization

Primary Electron Gun:

E = 5 GeV & 3 GeV, ∆E/E = 10−3

∆Px/P = 10−5

σx,y = 2.5 mm, σz = 1 mm

Target:

Crystal tungsten thickness: 0.5 → 3.0 mm

Amorphous tungsten thickness: 6 → 20 mm

Distance between two tungstens: 0.5 → 3 m

The AMD parameters is not optimised for now.

Traveling wave structure - Optimize for each target configuration.

Phases for the decelerating and accelerating structure

Gradients for the decelerating and accelerating structure

Injector Linacs:
Ef = Ei + ∆E cos(2πωt), here t is the arrive time at the end of pre-injector
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Start-to-end optimization - Software version

FOT - The random generators are changed to the C++ standard library
version

Geant4 - 4.10.04.b01

GCC - 7.2.1 (or 6.2.0)

octave - 4.2.1

RF-Track (updated to 2018-Jan-15th)

ROOT - 6.12.04

(placet)
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Start-to-end optimization - Nested Optimization
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Start-to-end optimization - Results - 2.5 mm spot size

5 GeV primary electron bunch

Crystal target thickness: 2.17 mm

Amorphous target thickness: 16.6 mm

Distance: 0.67 m

Phase: -33 & 85 degree

Gradient: 13.1 & 18.2 MV/m

Positron yield: 1.30

PEDD: 17.7 J/g

3 GeV primary electron bunch

Crystal target thickness: 2.20 mm

Amorphous target thickness: 12.3 mm

Distance: 0.65 m

Phase: -43 & 78 degree

Gradient: 13.7 & 18.0 MV/m

Positron yield: 0.76

PEDD: 17.1 J/g
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Start-to-end optimization - Results - 1.25 mm spot size

5 GeV primary electron bunch

Crystal target thickness: 1.68 mm

Amorphous target thickness: 14.9 mm

Distance: 0.66 m

Phase: -30 & 90 degree

Gradient: 17.2 & 17.5 MV/m

Positron yield: 1.94

PEDD: 29.3 J/g

3 GeV primary electron bunch

Crystal target thickness: 1.54 mm

Amorphous target thickness: 11.5 mm

Distance: 0.62 m

Phase: -34 & 88 degree

Gradient: 15.9 & 17.2 MV/m

Positron yield: 1.03

PEDD: 26.7 J/g

27 / 34



Outline Introduction & Review Motivation Subsystems Start-to-end Optimization Conclusion

Phase space - 5 GeV, 2.5 mm spot size

Target AMD TW11
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Longitudinal phase space - 5 GeV, 2.5 mm spot size

Target AMD TW11
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Conclusion

The positron source start-to-end optimization environment is setup
successfully

The program FOT is used to simulate the channeling process in crystal
tungsten.
Geant4 is used to simulation the electromagnetic process in crystal &
amorphous tungsten target.
AMD & traveling wave structure are simulation by RF-Track with proper
field-map.
The injector linac is considered by simple calculation.

The positron yield is determined as (within the PEDD limit):

Table: Positron yield

Positron yield 5 GeV 3 GeV
2.5 mm spot size 1.30 0.76

1.25 mm spot size 1.94 1.03
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Thank you!
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Backup
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Difference between FOT & VMS

coherent bremsstrahlung & channeling
FOT: Baier-Katkov formula - include non-uniformity field
VMS: uniform field approximation.

incoherent bremsstrahlung
FOT: included in Baier-Katkov formula
VMS: calculated separately

e+e− pair production
FOT: Not included, should be simulated in Geant4
VMS: Coherent effects is considered when pair is produced in VMS
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