CFS consideration on the positron source; target and dumps

Nobuhiro Terunuma and Yu Morikawa, KEK

29th May, 2018, ALCW2018, Fukuoka, Japan

Contents

- **CFS timeline on "Pre- and Preparation Phase"**
- Radiation Control Policy
- Shield thickness for "Underground environment"
- **Examples**
- Summary

CFS timeline on "Pre- and Preparation Phase"

Radiation Control Requirement

Equipment of the radiation protection will be a part of accelerator but have to be designed well with CFS especially for the higher radiation areas.

Control Policy and background

- As Low As Reasonably Achievable (ALARA) principle
- Low activation of rock and groundwater It should be less than the authorized level of radiation control.
- Protect workers from the residual activations (KEK) rad. workers < 20 uSv/h or 1 mSv/week</p>

Design for decommissioning

A device expected to be highly activated should have a structure that can be disassembled.

Radiation control for the underground environment

Local Shielding is required for the higher radiation sources.

It is not only for workers but also for the outside of 30 cm concrete of the tunnel wall as a public environment. Activation of Rock and Groundwater should be lower than the authorized level.

A guideline have been established for J-PARC.

5 mSv/h (neutron) when Beam ON

Neutron is dominant component especially for the transverse radiation from a high power absorber even for electron machine.

The guideline for ILC have to be established as soon as possible, anyway.

Heavy radiation area expected in Positron Source

Radiation evaluation by FLUKA simulation

- assume a maximum intense beam; i.e., luminosity upgrade option
- estimate radiation dose under beam operation
 - estimate residual activation: accumulation and decay in 20 years

60kW Tune-up Dump

common for e-driven and undulator

Photon Dump

undulator: assume the graphite dump

Positron Target and e⁻ dump

- e-driven
- undulator

No evaluation for this e- dump is prepared today. It should be done with an assumption of beam loss.

60 kW tune-up dump

Photon dump: graphite case

- 10 MeV, 120 kW for 250 GeV, High luminosity stage
- Located on the extended undulator photon line about 2 km.

Iron Shield 0.5 m and Boronized Concrete 0.5 m

The Graphite Dump should be renewed every a few years.

Working space for heavy activation graphite will require a significant size of room which pushes other beamlines away.

Where is this dump?

Detail layout of beam line configuration is required for CFS.

Positron target: undulator

10 MeV, 15/120 kW for 250 GeV, High luminosity stage

CFS consideration on the positron source; target and dumps, Nobuhiro Terunuma (KEK), 29 May 2018, ALCW2018, Fukuoka. 9/15

Positron target: e-driven

4.8 GeV, 30 uA; 144 kW

Note: If the guideline is relaxed by 10 times, the concrete is shorten to 1.6 m. It seems too optimistic.

CFS consideration on the positron source; target and dumps, Nobuhiro Terunuma (KEK), 29 May 2018, ALCW2018, Fukuoka. 10/15

Neutron dominant radiation

Total Dose Rate Profile

Neutron Dose Rate Profile

Difference of above figures is only for forward direction. It will be by photons, electrons and muons.

These figures also show how long longitudinally-shielded-area is needed. Dose rate drops about two orders for 10 m.

Cavern may be needed for heavy radiation point

For the decommissioning in future

Core part of heavy activation should have a possibility to remove from underground.

➔ assemble by blocks

Iron and Concrete, about 3m shield is required for "underground environment".

Is it possible to make 2m-thick wall **on the Ceiling** of large cavern? NO!

➔ put blocks on the primary shield box

For the exchange of Positron Target

Short summary of shield study for positron source

	beam spec. and deposit power	Thickness to 5 mSv/h for rock/groundwater (beam ON)		Thickness to 20 uSv/h for BDS workers (beam off)	personal comments
		Iron	Boronized concrete		
Target: e-driven	electron 98 kW	0.75 m	2.3 m	0.75 m (Iron)	Cavern may be required
Target: undulator	photon 15/120kW	0.75 m	0.25 m	÷	
Photon dump (Graphite)	photon 120 kW	0.5 m	0.5 m	÷	fix the location; i.e., fix the multi- beamline configuration
Tune-up dump	positron 60 kW	0.5 m	1.5 m	N/A. local pit in the wall	

Note: Above thickness means a transverse path length from a radiation source. Combination of shield materials and their thickness can be optimized.

Positron source beamline: baseline

The beamline layout have to be updated with long photon line to the photon dump.

Location of photon dump should be defined with a maintenance scenario.

Positron source beamline: backup(1)

In the case of starting with e-driven and change to undulator, but if e-driven is heavily activated, schematic layout will be as follows. TEML2PS(TDR) 60kW dump Case Study:: Stage-1: e-driven from e- DR PM-8(TDR) 60kW dump for e+ source e-driven positron source Target e-driven positron source (1047m) 153m BEGPLTR END-ELIN BEGEDOGL 6.00. 393.60m 3100.16m PTRANH 21.90, 3017.8m IP TPS2BDS EDOGLend 2241.2m e-Main Linac EDOGL 2241.2m **BDS** 400kW dump Main Dump 300m 60kW dump??

Positron source beamline: backup(2)

In the case of **starting with e-driven** and **change to undulator**, but **if e-driven is heavily activated**, schematic layout will be as follows.

Summary: Main Beam Dump and Around

CFS consideration on the main dump and around, Nobuhiro Terunuma (KEK), 29 May 2018, ALCW2018, Fukuoka.

Summary

A lot of design works are needed for CFS. Fix accelerator layout both for e-driven and undulator, and also combination(?).

Comments

- A cavern for e-driven target will be required but the construction itself may not be a kind of show stopper. We have many similar cavern already.
- Heavy radiation of e-driven target section should be treated as one of the reliability issue.
- CFS cost related to each positron scheme will be pushed aside. It is not a big portion anyway.

Backup slides

CFS consideration on the positron source; target and dumps, Nobuhiro Terunuma (KEK), 29 May 2018, ALCW2018, Fukuoka.

Positron source beamline: baseline

The beamline layout have to be updated with long photon line to the photon dump.

Location of photon dump should be defined with a maintenance scenario.

Positron source beamline: backup(1)

In the case of starting with e-driven and change to undulator, but if e-driven is heavily activated, schematic layout will be as follows. TEML2PS(TDR) 60kW dump Case Study:: Stage-1: e-driven from e- DR PM-8(TDR) 60kW dump for e+ source e-driven positron source Target e-driven positron source (1047m) 153m BEGPLTR END-ELIN BEGEDOGL 6.00. 393.60m 3100.16m PTRANH 21.90, 3017.8m IP TPS2BDS EDOGLend 2241.2m e-Main Linac EDOGL 2241.2m **BDS** 400kW dump Main Dump 300m 60kW dump??

Positron source beamline: backup(2)

In the case of **starting with e-driven** and **change to undulator**, but **if e-driven is heavily activated**, schematic layout will be as follows.

