Arian Linear Collider Workshop 2018 May 28 - June 1, 2018 Fukuoka International Congress Center Fukuoka, JAPAN

CLIC BDS design with $L^* = 6$ m

F. Plassard*, R. Tomás García, E. Marin, D. Schulte, D. Arominski, A. Latina and the MDI working group

> ALCW 2018, Fukuoka, Japan May 29th 2018

OUTLINES

- Motivations for a longer L*
- 2 CLIC 3 TeV BDS with $L^* = 6$ m optimization and performance
 - FFS optics comparison at 3 TeV
 - Higher order optimization of the BDS
 - Tuning under realistic static error conditions
- 3 CLIC 380 GeV BDS design and performances
 - BDS design with $L^* = 4.3$ m and $L^* = 6$ m
 - Tuning performances
- 4 Summary

The CLIC Beam Delivery System (BDS)

 $BDS \Rightarrow Diagnostics, beam \ collimation, \ \textbf{beam focusing in the FFS while correcting higher order transport aberrations to deliver the design IP beam sizes.}$

Energy staging: from 380 GeV to 3 TeV

CDR BDS layout : $L^* = 4.3 \text{ m} (1^{\text{st}} \text{ stage}) \& L^* = 3.5 \text{ m} (\text{top energy stage})$

New proposed BDS: $L^* = 6 \text{ m}$

CLIC MDI layout for $L^* = 3.5 \text{ m}$ (CDR)

- QD0 inside the experiment on the detector support
- Imposes the integration of a pre-insulator system to mitigate vibrations of QD0 to the 0.1 nm level
- Critical components around QD0 requires longer interventions due to the lack of space and access, leading to integrated luminosity loss
- QD0 surrounded by the strong magnetic field of the detector
- QD0 requires to be shielded by an anti-solenoid
- The shielding takes away a good fraction of the forward acceptance

CLIC MDI simplification with $L^* = 6$ m

- The reduced end-cap and barrel yoke allows QD0 to be placed on the more stable tunnel ground with an L* of 6 m
- No pre-insulator required for QD0 stabilization
- **Easier acces** for interventions on the QD0 region
- The detector longitudinal and radial fields are zeroed at the QD0 entrance and thus no antisolenoid shielding is needed
- Gain in the detector acceptance
- New detector model CLICdet details in "CLICdet: The post-CDR CLIC detector model" (CLICdp-Note-2017-001)

FFS optics comparison at 3 TeV

- The FFS length has been scaled with respect to L* in order to preserve the chromaticity correction properties along the system
- The $L^* = 6$ m design is **320 meters longer** than the nominal design

BDS performance comparison at 3 TeV

Design	$\mathcal{L}_{\rm total} [10^{34} {\rm cm}^{-2} {\rm s}^{-1}]$	$\mathcal{L}_{1\%}$
$L^* = 3.5 \text{ m}$ (linac shape energy spread)	7.6	2.4
$L^* = 6 \text{ m} (1\% \text{ full width energy spread})$	6.4	2.16
$L^* = 6 \text{ m (linac shape energy spread)}$	5.93	2.13

- Luminosity simulated assuming 1% full width energy spread and simulated assuming a more realistic energy spread shape coming from the main linac and taking into account uncorrelated energy spread of 1.6% of the pre-linac beam energy with a gaussian distribution.
- As for the L* = 3.5 m design, higher order multipoles have been introduce in the L* = 6 m FF beamline in order to push up the luminosity (see next slides)

Higher order optimization of the BDS : octupoles + decapole

The remaining higher order contributions to σ_y^* are identified

Vertical beam size σ_y^* reduced from 1.4 nm to 1.07 nm by using octupoles and a decapole at the appropriate locations

1.0

0.9

2

3

Order

5

6

by OCT1 located in high- η_x region

region

residual 4th order chromatic aberrations

are corrected by DEC1 located in high- η_x

Higher order optimization of the BDS: octupoles + decapole

- 3rd order geometrical aberration U_{3224} contributes to 0.2 nm of $\sigma_y^* \Rightarrow$ corrected by OCT2 located in low- η_x region
- 3rd order chromatic aberration U₃₄₆₆ contributes to 0.08 nm of σ_y^* ⇒ corrected by OCT1 located in high- η_x region
- lacksquare residual 4th order chromatic aberrations are corrected by DEC1 located in high- η_x region

Vertical beam size σ_y^* reduced from 1.4 nm to 1.07 nm by using octupoles and a decapole at the appropriate locations

Higher order optimization of the BDS: octupoles + decapole

- Luminosity simulated assuming a more realistic energy spread shape coming from the linac
- The updated lattice optimized with higher order multipoles provide a luminosity increase of 8.5% in the peak
- The difference in the peak luminosity $\mathcal{L}_{1\%}$ between the nominal and the $L^* = 6$ m lattice is 5.3%

Design	$\mathcal{L}_{\text{total}} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$\mathcal{L}_{1\%}$
$L^* = 3.5 \text{ m (linac energy spread)}$	7.6	2.4
$L^* = 6$ m (linac energy spread)	6.4	2.28

FFS tuning at 3 TeV

Table - Errors applied to the lattice

$\sigma_{\rm offset}$ (Quadrupoles, Sextupoles and BPMs)	$10\mu\mathrm{m}$
BPM resolution	10 nm
$\sigma_{\rm roll}$ (Quadrupoles, Sextupoles and BPMs)	$300\mu rad$
Strength error (Quadrupoles and Sextupoles)	0.01%

Tuning simulations: 1-beam tuning / 1% full width beam energy spread / before introducing higher order multipoles

- ⇒ 90% of the machines reach ≥ 97% of \mathcal{L}_0 = 5.9 ×10³⁴cm⁻²s⁻¹ in ≈ 6300 luminosity measurements.
- or 85% of the machines reaching $\geq 110\%$ of \mathcal{L}_0
- 13th and 14th iterations include the 2nd order knobs (T122, T126, T166, T324, T346 corrections)
- Additional knob scans can further improve the tuning performance

CLIC 380 GeV BDS design and performances

- \blacksquare In the framework of the CLIC rebaselining at 380 GeV, two L^* options for the FFS have been optimized :
 - L*= 4.3 m ⇒ provides optimal maximum luminosity but QD0 partially located inside the experiment.
 - L*=6 m ⇒ ease MDI, QD0 stabilization and avoid interplays between the QD0 and detector fields

Table – CLIC 380 GeV design parameters for both L^* options

4.3	6
553	770
950/30	950/30
8/0.1	8/0.1
145	145
2.3	2.3
1.5	1.5
0.9	0.9
43000	60000
	553 950/30 8/0.1 145 2.3 1.5 0.9

- \blacksquare The FFS length has been scaled with respect to L^* in order to preserve the chromaticity correction properties along the system
- The $L^* = 6$ m design is **220 meters longer** than the nominal design with $L^* = 4.3$ m

 \blacksquare A scan of the dispersion profile has been performed in order to optimize the luminosity for both L^* options

- For $L^* = 4.3$ m no increase of dispersion needed to improve luminosity
- For $L^* = 6$ m the optimal dispersion increase was found for $\eta_x = 60\%$

- For $L^* = 6$ m, octupolar corrections were needed in order to bring the vertical beam size towards the design value
- σ_{u}^{*} dominated by U₃₂₂₄, corrected by OCT2

Design	σ_x^*	σ_y^*	$\mathcal{L}_{ ext{total}}$	$\mathcal{L}_{1\%}$
	[nm]	[nm]	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$
$L^* = 4.3 \text{ m}$	148.2	3.22	1.55	0.93
$L^*=6~\mathrm{m}$	151.2	3.20	1.52	0.91

- Both lattices fulfill the luminosity requirements
- The 20% of luminosity budget is included in the larger assumed emittances in simulations :
 - $\epsilon_x^* = 950 \text{ nm (design} = 920 \text{ nm) and } \epsilon_y^* = 30 \text{ nm (design} = 20 \text{ nm)}$
- Small luminosity difference between both L^* options $\Rightarrow L^* = 6$ m lattice optimized with octupoles

Optics optimized w.r.t to the energy upgrade to 3 TeV

- The lattice of the 380 GeV BDS was optimized by taking into account the alignment of the Linacs of the different CLIC stages in the tunnel
- In the case of the short L^* options for CLIC, the crossing angle for the 1st stage is **18.3** mrad and 20 mrad for CLIC 3 TeV

Optics optimized w.r.t to the energy upgrade to 3 TeV

- The lattice of the 380 GeV BDS was optimized by taking into account the alignment of the Linacs of the different CLIC stages in the tunnel
- In the case of the L^* = 6 m options for CLIC, the crossing angle for the 1st stage is **16.5** mrad and 20 mrad for CLIC 3 TeV

Tuning performances : $L^*=4.3$ m

Table - Errors applied to the lattice

$\sigma_{\rm offset}$ (Quadrupoles, Sextupoles and BPMs)	$10 \mu \mathrm{m}$
BPM resolution	10 nm
$\sigma_{\rm roll}$ (Quadrupoles, Sextupoles and BPMs)	$300\mu rad$
Strength error (Quadrupoles and Sextupoles)	0.01%

Tuning simulations: 1-beam tuning / 1% full width beam energy spread

- \Rightarrow 90% of the machines reach \geq 92% of \mathcal{L}_0 = 1.5 $\times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ in \approx 6300 luminosity measurements.
- or 84% of the machines reaching $\geq \mathcal{L}_0$
- 2nd order knobs (T122, T126, T166, T324, T346 corrections) included from the 1st iteration
- Additional knob scans can further improve the tuning performance

Tuning performances : $L^*=6$ m

Table - Errors applied to the lattice

$\sigma_{\rm offset}$ (Quadrupoles, Sextupoles and BPMs)	$10 \mu \mathrm{m}$
BPM resolution	$10~\mathrm{nm}$
$\sigma_{\rm roll}$ (Quadrupoles, Sextupoles and BPMs)	$300\mu rad$
Strength error (Quadrupoles and Sextupoles)	0.01%

Tuning simulations: 1-beam tuning / 1% full width beam energy spread

- \Rightarrow 90% of the machines reach \geq 96% of \mathcal{L}_0 = 1.5 $\times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ in \approx 6300 luminosity measurements.
- or 85% of the machines reaching $\geq \mathcal{L}_0$
- 2nd order knobs (T122, T126, T166, T324, T346 corrections) included from the 1st iteration
- Additional knob scans can further improve the tuning performance

Summary

CLIC 3 TeV BDS

- For $L^*=6$ m the peak luminosity $\mathcal{L}_{1\%}$ is 5.3% lower than the nominal design with $L^*=3.5$ m
- The luminosity comparison does not take into account the MDI simplification impact for the $L^* = 6$ m option :
 - QD0 vibration reduction
 - No field interplays between QD0 and the experiment
 - Easier access for interventions in the QD0 region
 - Gain in detector acceptance
- Tuning efficiency under realistic static error conditions falls closely to the tuning goal \Rightarrow 90% of the machines reach \geq 97% of \mathcal{L}_0 .
- The collimatior openings should not be tightened for $L^* = 6$ m (https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.011002)

CLIC 380 GeV BDS

- Both designs with $L^* = 4.3$ m and $L^* = 6$ m (optimized with octupoles) achieve the luminosity requirements for CLIC including 20% of luminosity budget for static and dynamic imperfections
- lacktriangleright Tuning performances under realistic static imperfections are similar for both L^* options and are very close to the tuning goal

The demonstration tunability of the FFS for CLIC 3 TeV and CLIC 380 GeV will requires 2-beam tuning simulations including dynamic imperfections.