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The CLIC Beam Delivery System (BDS)

BDS ⇒ Diagnostics, beam collimation, beam focusing in the FFS while correcting
higher order transport aberrations to deliver the design IP beam sizes.

Energy staging : from 380 GeV to 3 TeV
CDR BDS layout : L∗ = 4.3 m (1st stage) & L∗ = 3.5 m (top energy stage)
New proposed BDS : L∗ = 6 m
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CLIC MDI layout for L∗ = 3.5 m (CDR)

11.3 PUSH-PULL OPERATION

11.3 Push-Pull Operation
Both detectors are installed on independent platforms made of reinforced concrete, with a size of ap-
proximately 13 m × 16.5 m × 2.5 m, corresponding to the footprint of the detectors. The design will
be similar to the plug of the PX56 shaft at CMS and weigh about 1500 tonnes. Such a plug has been

Fig. 11.7: Steelwork of the CMS plug Fig. 11.8: The CMS plug after concreting

successfully operated, supporting statically up to 2500 tonnes and having a span of 20 m between the
rails. For the present application the gross weight of the detector plus platform will be ≈14000 tonnes
and the free span between the supports will be much smaller, in the order of 4 m. Figures 11.7 and 11.8
show the dense steel reinforcement of the CMS plug and the completed plug after on site during civil
construction. At rest, the platforms will be in contact with the floor through a set of anti-seismic supports
that will redistribute the total load to ground. First FEA calculations confirm the thickness of about 2.5 m
and that the local stress is well below the admissible values.

Fig. 11.9: Vertical cut through the experiment
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QD0 inside the experiment on the detector support
Imposes the integration of a pre-insulator system to mitigate vibrations of
QD0 to the 0.1 nm level
Critical components around QD0 requires longer interventions due to the lack
of space and access, leading to integrated luminosity loss
QD0 surrounded by the strong magnetic field of the detector
QD0 requires to be shielded by an anti-solenoid
The shielding takes away a good fraction of the forward acceptance
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CLIC MDI simplification with L∗ = 6 m
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The reduced end-cap and barrel yoke allows QD0 to be placed on the more
stable tunnel ground with an L∗ of 6 m

No pre-insulator required for QD0 stabilization
Easier acces for interventions on the QD0 region
The detector longitudinal and radial fields are zeroed at the QD0 entrance and
thus no antisolenoid shielding is needed
Gain in the detector acceptance
New detector model CLICdet details in ”CLICdet : The post-CDR CLIC detector model” (CLICdp-Note-2017-001)
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FFS optics comparison at 3 TeV

The FFS length has been scaled with respect to L∗ in order to preserve the chromaticity
correction properties along the system
The L∗ = 6 m design is 320 meters longer than the nominal design
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BDS performance comparison at 3 TeV

Design Ltotal [1034cm−2s−1] L1%
L∗ = 3.5 m (linac shape energy spread) 7.6 2.4
L∗ = 6 m (1% full width energy spread) 6.4 2.16
L∗ = 6 m (linac shape energy spread) 5.93 2.13
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Luminosity simulated assuming 1% full
width energy spread and simulated
assuming a more realistic energy spread
shape coming from the main linac and
taking into account uncorrelated energy
spread of 1.6% of the pre-linac beam
energy with a gaussian distribution.

As for the L∗ = 3.5 m design, higher
order multipoles have been introduce in
the L∗ = 6 m FF beamline in order to
push up the luminosity (see next slides)

F. Plassard CERN/ Uni. Paris Sud May 29th 2018 7 / 23



Higher order optimization of the BDS : octupoles + decapole
The remaining higher order contributions to σ∗

y are identified
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Higher order optimization of the BDS : octupoles + decapole
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Higher order optimization of the BDS : octupoles + decapole
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The difference in the peak
luminosity L1% between the
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Design Ltotal [1034cm−2s−1] L1%
L∗ = 3.5 m (linac energy spread) 7.6 2.4
L∗ = 6 m (linac energy spread) 6.4 2.28
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FFS tuning at 3 TeV

Table – Errors applied to the lattice

σoffset (Quadrupoles, Sextupoles and BPMs) 10µm
BPM resolution 10 nm
σroll (Quadrupoles, Sextupoles and BPMs) 300µrad
Strength error (Quadrupoles and Sextupoles) 0.01%

Tuning simulations : 1-beam tuning / 1% full width beam energy spread / before
introducing higher order multipoles

⇒ 90% of the machines reach
≥ 97% of L0 = 5.9
×1034cm−2s−1 in ≈ 6300
luminosity measurements.
or 85% of the machines reaching
≥ 110% of L0

13th and 14th iterations include
the 2nd order knobs (T122,
T126, T166, T324, T346
corrections)
Additional knob scans can
further improve the tuning
performance 0 20 40 60 80 100
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BDS design with L∗ = 4.3 m and L∗ = 6 m

CLIC 380 GeV BDS design and
performances
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BDS design with L∗ = 4.3 m and L∗ = 6 m

In the framework of the CLIC rebaselining at 380 GeV, two L∗ options for the FFS have
been optimized :

L∗= 4.3 m ⇒ provides optimal maximum luminosity but QD0 partially located inside the
experiment.

L∗= 6 m ⇒ ease MDI, QD0 stabilization and avoid interplays between the QD0 and detector
fields

Table – CLIC 380GeV design parameters for both L∗ options

L∗ [m] 4.3 6
Final focus system length [m] 553 770
γϵx/γϵy [nm] 950/30 950/30
β∗

x/β∗
y [mm] 8/0.1 8/0.1

σ∗
x,design [nm] 145 145

σ∗
y,design [nm] 2.3 2.3

Ltot, design [1034 cm−2s−1] 1.5 1.5
L1%, design [1034 cm−2s−1] 0.9 0.9
Chromaticity ξy (≈L∗/β∗

y ) 43000 60000
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BDS design with L∗ = 4.3 m and L∗ = 6 m

The FFS length has been scaled with respect to L∗ in order to preserve the chromaticity
correction properties along the system
The L∗ = 6 m design is 220 meters longer than the nominal design with L∗= 4.3 m
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BDS design with L∗ = 4.3 m and L∗ = 6 m

A scan of the dispersion profile has been performed in order to optimize the luminosity for
both L∗ options
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BDS design with L∗ = 4.3 m and L∗ = 6 m
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BDS design with L∗ = 4.3 m and L∗ = 6 m
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BDS design with L∗ = 4.3 m and L∗ = 6 m

Linac energy spread
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Both lattices fulfill the luminosity requirements
The 20% of luminosity budget is included in the larger assumed
emittances in simulations :
ϵ∗

x = 950 nm (design = 920 nm) and ϵ∗
y = 30 nm (design = 20 nm)

Small luminosity difference between both L∗ options ⇒ L∗ = 6 m
lattice optimized with octupoles
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Optics optimized w.r.t to the energy upgrade to 3 TeV

The lattice of the 380 GeV BDS was optimized by taking into account the alignment of the
Linacs of the different CLIC stages in the tunnel

In the case of the short L∗ options for CLIC, the crossing angle for the 1st stage is 18.3
mrad and 20 mrad for CLIC 3 TeV

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-3000 -2500 -2000 -1500 -1000 -500  0

x[
m

]

s[m]

CLIC 3 TeV (L* = 3.5 m)
c.a = 20 mrad

CLIC 380 GeV (L* = 4.3 m)
c.a = 18.3 mrad-0.8

-0.6

-0.4

-0.2

 0

 0.2

-3000 -2500 -2000 -1500 -1000 -500  0

x[
m

]

s[m]

F. Plassard CERN/ Uni. Paris Sud May 29th 2018 19 / 23



Optics optimized w.r.t to the energy upgrade to 3 TeV

The lattice of the 380 GeV BDS was optimized by taking into account the alignment of the
Linacs of the different CLIC stages in the tunnel

In the case of the L∗= 6 m options for CLIC, the crossing angle for the 1st stage is 16.5
mrad and 20 mrad for CLIC 3 TeV
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Tuning performances : L∗= 4.3 m

Table – Errors applied to the lattice

σoffset (Quadrupoles, Sextupoles and BPMs) 10µm
BPM resolution 10 nm
σroll (Quadrupoles, Sextupoles and BPMs) 300µrad
Strength error (Quadrupoles and Sextupoles) 0.01%

Tuning simulations : 1-beam tuning / 1% full width beam energy spread

⇒ 90% of the machines reach
≥ 92% of L0 = 1.5
×1034cm−2s−1 in ≈ 6300
luminosity measurements.
or 84% of the machines reaching
≥ L0

2nd order knobs (T122, T126,
T166, T324, T346 corrections)
included from the 1st iteration
Additional knob scans can
further improve the tuning
performance 0 20 40 60 80 100
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Tuning performances : L∗= 6 m

Table – Errors applied to the lattice

σoffset (Quadrupoles, Sextupoles and BPMs) 10µm
BPM resolution 10 nm
σroll (Quadrupoles, Sextupoles and BPMs) 300µrad
Strength error (Quadrupoles and Sextupoles) 0.01%

Tuning simulations : 1-beam tuning / 1% full width beam energy spread

⇒ 90% of the machines reach
≥ 96% of L0 = 1.5
×1034cm−2s−1 in ≈ 6300
luminosity measurements.
or 85% of the machines reaching
≥ L0

2nd order knobs (T122, T126,
T166, T324, T346 corrections)
included from the 1st iteration
Additional knob scans can
further improve the tuning
performance 0 20 40 60 80 100
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Summary

CLIC 3 TeV BDS

For L∗ = 6 m the peak luminosity L1% is 5.3% lower than the nominal design with
L∗ = 3.5 m

The luminosity comparison does not take into account the MDI simplification impact for
the L∗ = 6 m option :

QD0 vibration reduction
No field interplays between QD0 and the experiment
Easier access for interventions in the QD0 region
Gain in detector acceptance

Tuning efficiency under realistic static error conditions falls closely to the tuning goal ⇒
90% of the machines reach ≥ 97% of L0.

The collimatior openings should not be tightened for L∗ = 6 m
(https ://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.011002)

CLIC 380 GeV BDS

Both designs with L∗ = 4.3 m and L∗ = 6 m (optimized with octupoles) achieve the
luminosity requirements for CLIC including 20% of luminosity budget for static and
dynamic imperfections

Tuning performances under realistic static imperfections are similar for both L∗ options
and are very close to the tuning goal

The demonstration tunability of the FFS for CLIC 3 TeV and CLIC 380 GeV will requires
2-beam tuning simulations including dynamic imperfections.
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