CLIC-BDS Tuning Study with short L*

Edu Marin¹ emarinla@cern.ch

¹CERN, Geneva, Switzerland

May 29th, 2018 ALCW, Fukuoka (Japan)

Acknowledgements: D. Schulte, R. Tomas, A. Latina and J. Pfingstner

CLIC o	Tuning 000000	Conclusions

Outline

Previous Results

Tuning

- FrameWork
- Results

CLIC Footprint & Parameters [1]

CLIC

Tuning 000000 Conclusions

Previous Results

2-Beam Tuning Results (Static Imperfections)

 $\begin{array}{l} 90\% \text{ of machines reached a } \mathcal{L} \geq 102\% \mathcal{L}_0 \ensuremath{\left[3\right]} \\ \text{After 15000 luminosity measurements} \\ \textbf{40}\% \text{ slower than single beam tuning} \end{array}$

FrameWork

Machine Imperfections

Error	Unit		$\sigma_{ m error}$
		CDR [1]	Present
e ⁻ & e ⁺ Treatment	-	Single	Independently
BPM Transverse Alignment	[µm]	10	10
BPM Roll	$[\mu rad]$	-	300
BPM Resolution	[nm]	10	20
Magnet Transverse Alignment	[µm]	10	10
Magnet Roll	$[\mu rad]$	-	300
Magnet Strength	[%]	-	0.01
Ground Motion	[s]	-	0.02

CLIC o	Tuning o●oooo	Conclusions
FrameWork		

Tuning Algorithm

- Beam-Based Alignment Techniques
 - 1-to-1
 - Target Dispersion Steering
 - Multipole Alignment
- Linear Knobs (Sextupole displacements in transverse plane)
- Non-linear Knobs (Strength variation of normal and skew sextupoles)

Notes:

Knobs are scanned first to e^- and after to e^+ Parabola fit technique is used to scan the knobs Each knob takes \approx 20 measurements Ground motion time lapse between \mathcal{L} measurements is 0.02 s (*not realistic*)

FrameWork

CLIC Stability Requirements

- Sub-nm Y-offset tolerances found for QF1 and QD0 [2]
- Luminosity stability due to ground motion

GM counter-measures:

- Active Stabilization System
- Orbit Feed-Back (ATF2 Experiment [4])
- Pre-isolator (Required for stability)
- IP Feed-back (Offset removed)

CLIC	Tuning	Conclusions
	00000	

Results

Tuning Results

90 % machines reach 60 % of \mathcal{L}_0 after 47000 \mathcal{L} measurements

CLIC o	Tuning ○○○○●○	Conclusions
Results		

Motion of the FD quadrupoles un-correlated to the rest of the beamlines

Pre-isolator

Results

Tuning Results w/o Pre-isolator

90 % machines reach 91 % of \mathcal{L}_0 after 53000 28000 effective \mathcal{L} measurements

Summary

Conclusions

Notable progress since CDR (2012)

- Tuning Procedure (Effective Tuning)
- Realistic Scenario (static + dynamic imperfections)
- Performance achieved?

```
90% of machines reached a \mathcal{L} \geq 89\% \mathcal{L}_0
```

Conclusions

Comparable* to ILC Studies [4] (90% of machines $\mathcal{L} \geq 91\% \mathcal{L}_0)$

Future Steps

- GM time lapse (2 s? including magnet movers/ps?)
- Use pair creations signal for tuning
- Dynamic errors missing: Power supplies, magnet movers,...
- Improvements on the tuning algorithm
 - Scan on smallest σ*
 - Remove non-effective knobs
- *Although the imperfection considered are different

BIBLIOGRAPHY

- M. Aicheler *et al.*, "A Multi-TeV Linear Collider Based on CLIC Technology CLIC Conceptual Design Report," *CERN-2012-007*, 2012.
- J. Snuverink, J. Barranco, H. Garcia, Y. Levinsen, R. Tomás and D. Schulte, "CLIC Final Focus System Alignment and Magnet Tolerances", *Proc. of IPAC 2013, pp. 1682–1684*, Shangai, China, 2013.
- E. Marin, A. Latina, D. Schulte, R. Tomas and J. Pfingstner, "Final Focus System tuning studies towards CLIC feasibility", *Physical Review Accelerators and Beams 21* (1), 011003, (2018).
- B. Douglas, "Compensation of orbit distortion due to quadrupole motionusing feed-forward control at KEK ATF2", NIM-A 895 (2018) 10-18
- G. White, "BDS BBA tuning and beam dynamics", LET Beam Dynamics Workshop, 2007