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Magnetic Fields
Measurement

e Background magnetic field measured in the LHC tunnel (near
the ALICE detector) on the 31/01/18:;

2

=
=
—— Measurement S 10°} —— Measurement
— o
5 LEMI-144 Noise - A i
—N 10 n LEMI-144 Noise
= 2 \
100 T
Z 10°f e
a £
Q 10! 8 10—1 A
— @F
= 5
' 107} E
= = 1077
N _ o
1077 ¥
s go
S 15 < 107
A, 10 =
<
1 1 1 1 1 %‘O 1 1 1 1 1
0 50 100 150 200 250 300 -‘é 0 50 100 150 200 250 300
||

Frequency [Hz| Frequency [Hz]



Magnetic Fields
Measurement

e Background magnetic field measured in the LHC tunnel (near
the ALICE detector) on the 31/01/18:;
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Effect of Beam-Based
Feedback

e CLIC has a repetition rate of 50 Hz. This means it is
insensitive to harmonics of 50 Hz.

e Effect of a dead-beat feedback of unity gain:
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Effect of Shielding



Effect of Shielding

Material Advantages Disadvantages
Conductive materials: Effective for high Expep SIve
. . Not effective for low
Copper, Silver frequencies ; .
requencies
Ferromagnetic materials: High permeability Weak field behaviour needs
Mu-Metals, Permalloys | Effective for low frequencies to be verified
: , Expensive
High Temperature Attenuates all frequencies | Availability
Superconductors ; .
Temperature requirements
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2 cm copper beam pipe:
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Effect of Shielding

2 cm copper beam pipe:
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Effect of Shielding

Effect of a 1 mm mu-metal coating around beam pipe:
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Effect of Shielding

Effect of a 1 mm mu-metal coating around beam pipe:
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Effect of Shielding

Effect of a 1 mm mu-metal coating around beam pipe:
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Shielding appears to be very effective
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Effect of Shielding

e The calculation on the previous slide requires measurements of
permeability and validation of the model.

e The model used is outlined In:

J. F. Hoburg, “A computational methodology and results for
quasistatic multilayered magnetic shielding,” IEEE Trans.
Electromagn. Compatibility, vol. 38, pp. 92-103, 1996.

e Valid for linear materials, where B(t) = uH (t).



Effect of Shielding

* The Rayleigh region:

BO — /LZH() -+ VHg
By >~ pu; Hy

e Has been measured to be valid for Hy < 0.1 mT.

e [; Is usually extrapolated from measurements.
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Initial Permeability

Superconducting Cavities for the ILC:

e DC magnetic fields in the vicinity of superconducting cavities
leads to power losses - lowers Q-value.

* Magnetic shields to protect against the Earth’s magnetic field
are being investigated at KEK by:

K. Tsuchiya, et al., Proc. EPAC’ 2006
(Edinburgh, Scotland, 2006) pp 505-507.
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Initial Permeability

Superconducting Cavities for the ILC:
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Shielding Strategy

Two most sensitive sections are the RTML transfer line and

BDS.

The long drifts in the RTML transfer line can easily be shielded.
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Cost Estimate

e Assuming:
e Quter radius of 8 cm.
e TJotal length of 16.4 km after DRs.
e Mu-metal coating for all of the beam pipe (after DRs).

e Approximately $580 per metre squared of mu-metal
(for 0.1 mm thick foil).

Total cost = $ 5.3 million
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Conclusions and Future
Work

e Conclusions:

e Passive shielding looks like a promising technique to mitigate stray
magnetic fields.

e Future work:
* Measure permeability of mu-metal at low magnetic field intensities.
* Experimentally verify models for shielding.
* Investigate homogeneity of field inside a shield.

* Cost optimise the shielding thickness and effectiveness.
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