

CLIC Stray Magnetic Field Tolerances and Shielding Techniques

C. Gohil CERN, Geneva, Switzerland

Acknowledgements: E. Marin, D. Schulte, M. Buzio, P. N. Burrows

Asian Linear Collider Workshop 2018 (30/05/18)

Contents

- Tolerances for the 380 GeV CLIC design
- Background magnetic field on CERN site
- Effects of mitigation
 - Beam-based feedback
 - Passive shielding
- Conclusions and Future Work

 10^{6}

Magnetic Fields Measurement

• Background magnetic field measured in the LHC tunnel (near the ALICE detector) on the 31/01/18:

Magnetic Fields Measurement

• Background magnetic field measured in the LHC tunnel (near the ALICE detector) on the 31/01/18:

Largest contributions come from harmonics of the electrical grid

Effect of Beam-Based Feedback

- CLIC has a repetition rate of 50 Hz. This means it is insensitive to harmonics of 50 Hz.
- Effect of a dead-beat feedback of unity gain:

Material	Advantages	Disadvantages
Conductive materials: Copper, Silver	Effective for high frequencies	Expensive Not effective for low frequencies
Ferromagnetic materials: Mu-Metals, Permalloys	High permeability Effective for low frequencies	Weak field behaviour needs to be verified
High Temperature Superconductors	Attenuates all frequencies	Expensive Availability Temperature requirements

Material	Advantages	Disadvantages
Conductive materials: Copper, Silver	Effective for high frequencies	Expensive Not effective for low frequencies
Ferromagnetic materials: Mu-Metals, Permalloys	High permeability Effective for low frequencies	Weak field behaviour needs to be verified
High Temperature Superconductors	Attenuates all frequencies	Expensive Availability Temperature requirements

2 cm copper beam pipe:

2 cm copper beam pipe:

Largest contributions are low frequencies

Effect of a 1 mm mu-metal coating around beam pipe:

Effect of a 1 mm mu-metal coating around beam pipe:

Effect of a 1 mm mu-metal coating around beam pipe:

Shielding appears to be very effective

- The calculation on the previous slide requires measurements of permeability and validation of the model.
- The model used is outlined in:
- J. F. Hoburg, "A computational methodology and results for quasistatic multilayered magnetic shielding," IEEE Trans. Electromagn. Compatibility, vol. 38, pp. 92–103, 1996.
- Valid for linear materials, where $\boldsymbol{B}(t) = \mu \boldsymbol{H}(t)$.

• The Rayleigh region:

$$B_0 = \mu_i H_0 + \nu H_0^2$$
$$B_0 \simeq \mu_i H_0$$

- Has been measured to be valid for $H_0 \le 0.1 \text{ mT}$.
- μ_i is usually extrapolated from measurements.

Initial Permeability

Superconducting Cavities for the ILC:

- DC magnetic fields in the vicinity of superconducting cavities leads to power losses lowers Q-value.
- Magnetic shields to protect against the Earth's magnetic field are being investigated at KEK by:

K. Tsuchiya, *et al.*, Proc. EPAC' 2006 (Edinburgh, Scotland, 2006) pp 505–507.

Initial Permeability

Superconducting Cavities for the ILC:

Shielding Strategy

- Two most sensitive sections are the RTML transfer line and BDS.
- The long drifts in the RTML transfer line can easily be shielded.
- The BDS contains two sensitive regions.
- It is expected that the tolerance can be greatly improved by shielding just these regions.

Cost Estimate

- Assuming:
 - Outer radius of 8 cm.
 - Total length of 16.4 km after DRs.
 - Mu-metal coating for all of the beam pipe (after DRs).
 - Approximately \$580 per metre squared of mu-metal (for 0.1 mm thick foil).

Total cost = \$5.3 million

Conclusions and Future Work

- Conclusions:
 - Passive shielding looks like a promising technique to mitigate stray magnetic fields.
- Future work:
 - Measure permeability of mu-metal at low magnetic field intensities.
 - Experimentally verify models for shielding.
 - Investigate homogeneity of field inside a shield.
 - Cost optimise the shielding thickness and effectiveness.