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DBRC review
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The Drive Beam Recombination Complex

The DBRC is located
between the drive beam
linac and the deceleration
sectors

It’s role is to combine the
drive beam by a factor 24×
into high frequency pulses
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Placet2 - DBRC section lattices

122 bunches
0.49975 GHz
244 ns

4.2 A
2ns ≡ 60cm
between bunches

70760 bunches (≡ 142µs) train

2928 bunches
11.994 GHz
244 ns

100 A
83ps ≡ 2.5cm
between bunches

5.9 µs
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Beam parameters

Injection Parameters:

E = 1.9/2.38 GeV*
δ = 0.85 %
σz = 1 mm
εx = 50µm
εy = 50µm

Extraction Parameters:

σz = 1 mm
εx < 150µm
εy < 150µm

* The DB energy is 1.9 GeV for CLIC’s 1st stage and 2.38 GeV for
stages 2 and 3. Most optical properties of the lattice are similar.
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Notation

We are tracking 12 bunch ”families” differentiated by the number
of turns they take in CR1 and CR2: b CR2

CR1
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Design challenges
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Transverse pulse emittance

-1.0 -0.5 0.5 1.0

-0.5

0.5

x [a.u.]

x′ [a.u.] AC

B

Targeting 〈ε〉 does not ensure twiss and centre-orbit match

We project all distributions on top of one-another and compute ε̃

ε̃ ≥ 〈ε〉

Note: I’ll talk more about emittance evaluation emittance later
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Longitudinal profile

DBRC before optimisation
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Source of the longitudinal issues

z (s) = z +R56δ + T566δ
2

T566[n]
=
∑
i
R5i[n]

Ti66[n−1]
+
∑
ij
T5ij[n]

Ri6[n−1]
Ri6[n−1]

T566[n]
∼ T566[n−1]

+
(
R26[n−1]

)2
T522[n]

T522[Drift]
= L

2
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T566 tracking - single arc (CR2)

Placet2 can now track
individual tensor elements

* If T522 = T544 = 0
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Results
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Combiner Ring 1 optimisation

Before optimisation After optimisation

* E = 2.38 GeV

Emittance [µm] b j
0.5 b j

1.5 b j
2.5 〈εi〉 ε̃i

Horizontal 79 72 90 80 88
Vertical 56 56 64 59 59
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Longitudinal profile before CR2 optimisation

* E = 2.38 GeV
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80 µm results - T566 correction

T
5
6
6

[m
]

b 3.5
2.5

⇑ ⇑
CR2 injection CR2 extraction
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Combiner Ring 2 optimisation

Before optimisation After optimisation

* E = 2.38 GeV

Emittance [µm] b 0.5
1.5 b 1.5

1.5 b 2.5
1.5 b 3.5

1.5 〈εi〉 ε̃i ε̃i

(
b j
i

)
Horizontal 75 77 89 96 84 87 120
Vertical 65 70 70 76 70 70 71
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Longitudinal profile after CR2 optimisation

* E = 1.9 GeV

Raul Costa DBRC Optimisation May 30, 2018 12 / 23



Extraction results (after TTA)

Bunch Stotal [m] εx [µm] εy [µm] T566 [m] σz [mm]

b 3.5
2.5 4145 207 161 0.23 0.43

b 2.5
2.5 3706 169 137 0.21 0.42

b 1.5
2.5 3267 166 154 0.21 0.42

b 0.5
2.5 2828 116 98 0.22 0.41

b 3.5
1.5 3853 106 142 0.35 0.42

b 2.5
1.5 3414 84 107 0.36 0.42

b 1.5
1.5 2975 87 98 0.38 0.42

b 0.5
1.5 2536 80 85 0.39 0.42

b 3.5
0.5 3560 107 146 0.54 0.43

b 2.5
0.5 3121 96 113 0.54 0.43

b 1.5
0.5 2682 89 101 0.57 0.43

b 0.5
0.5 2243 108 91 0.59 0.43

b j
i – 117 112 – –
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R56 in the transfer lines

* E = 1.9 GeV

⇓⇓ ⇓⇓
TL2TL2 TL3TL3

σ
z

[m
m

]

The decrease in bunch length originates in non-zero R56

(unwanted side-effect of previous optimisation scans)

TL3 has already been optimised to have R56 ∼ 0

TL2 is next...

Raul Costa DBRC Optimisation May 30, 2018 14 / 23



R56 in the transfer lines

* E = 1.9 GeV

⇓⇓ ⇓⇓
TL2TL2 TL3TL3

σ
z

[m
m

]

The decrease in bunch length originates in non-zero R56

(unwanted side-effect of previous optimisation scans)

TL3 has already been optimised to have R56 ∼ 0

TL2 is next...

Raul Costa DBRC Optimisation May 30, 2018 14 / 23



R56 in the transfer lines

* E = 1.9 GeV

⇓⇓ ⇓⇓
TL2TL2 TL3TL3

σ
z

[m
m

]

The decrease in bunch length originates in non-zero R56

(unwanted side-effect of previous optimisation scans)

TL3 has already been optimised to have R56 ∼ 0

TL2 is next...

Raul Costa DBRC Optimisation May 30, 2018 14 / 23



Optimisation techniques with particle losses
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General technique

Optimisation is performed
by changing optical
strengths of some elements

Placet2’s API to Octave

to access Nelder-Mead’s
downhill simplex algorithm

We Define element families
(7-40) and minimize
w1εx + w2εy + w3T566

∗

Takes a lot of computing
time and fine tuning

Ex: partial CR2 optimisation

ε
[µ

m
]

εx
εy

# of iterations

* E = 2.38 GeV

* In reality minimizing the error of a linear fit is more efficient
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Emittance evaluation from a particle distribution

In multiple particle tracking we evaluate emittance as

εq =

√
det

([
cov (q, q) cov (q, q′)
cov (q′, q) cov (q′, q′)

])

However, if particle losses are possible during optimisation,
increasing particle loss will decrease the εq evaluation

The optimisation scan will therefore ”attempt” to lose more particles!
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Emittance evaluation from a particle distribution

When 1st attempting to address this, we added a term to the merit
function such that

w1εx + w2εy + w3T566 +W4NLosses ; W4 � wi

However Nelder-Mead’s symplex is not very suitable for merit functions
with very sudden changes in steepness. This makes it harder for
optimisation scans to converge (we will see a plot in a bit)

We have therefore decided to remove the NLosses term and revise the
way the merit function evaluates εq.

Instead of using the full distribution, we compute εq using a fixed
number of macro particles (99% of the original distribution)

This also provides a better fit to the particle distribution (since the
bunch is not actually Gaussian at extraction)
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Emittance evaluation from a particle distribution

⇑

losses
εx
ε0.99x

ε
[µ

m
]

# of iterations

* E = 1.9 GeV
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Gaussian fit comparison
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Conclusions and Outlook
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Conclusions

• Placet2 has been updated to track individual tensor elements

• The main DBRC design challenges were identified and addressed

• With an injected beam of 50µm, the latest lattice has minimal
T566 (< 60 cm) while meting the emittance budget
(εx = 117µm ; εy = 112µm)

• The transfer lines present some unwanted R56 (∼ -7 cm)

• Particle loss and long non-Gaussian are detrimental to the
performance of our optimisation scans

• When losses are possible, estimating ε using 99% of the particle
distribution improves the performance of optimisation scans

• It also provides a better fit for distributions with long tails
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Outlook

• DBRC

• Remove R56 from TL2 (or update the final chicane)
• Implement the delay loop’s short path
• Try to optimise for δ = 1%
• Implement misalignments and beam-based alignment

techniques

• Placet2

• Implement CSR (and update ISR)
• Implement decelerators
• Improve parallelization, LXplus support, etc...

• Full drive beam integration

Injector DBA DBRC PETS
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Full drive beam integration (status)

Injector

Output:

εx ≤ 35µm

εy ≤ 35µm

E = 50 MeV

δ = 0.95%

E
[M

eV
]

* Thanks to Steffen Doebert and Shahin Hajari for the distributions
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Full drive beam integration (status)

DBA

Input:

εq = 30µm

E = 50 MeV

δ = 1%

Gaussian

Output:

εq = 31µm

E = 1.9 GeV

δ = 0.84%

E
[G

eV
]

* Thanks to Avni Aksoy and Andrea Latina for the distribution
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The end

Thank you
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Extra slides
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R56 before optimisation

* From Eduardo Marin’s CLIC Workshop 2016
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DBA simulation parameters

DBA simulation parameters:

Initial energy (MeV) 50
Final energy (GeV) 1.9
Initial Energy Spread (%) 1.0
Bunch Charge (nC) 8.4
Initial emittance (µm) 30
BPM resolution (µm) 10
Misalignment errors - Quad. and Acc. (µm rms) 200
Pitch errors - Acc. (µrad rms) 200
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DBA simulations (WFS)

• Average final emittance: εx = 31 µm, εy = 30 µm

• Final energy spread of 0.836%± 0.004%
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CR1 Lattice
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CR2 Lattice

Raul Costa DBRC Optimisation May 30, 2018 23 / 23


	DBRC review
	Design challenges
	Results
	Optimisation techniques with particle losses
	Conclusions and Outlook
	Appendix

