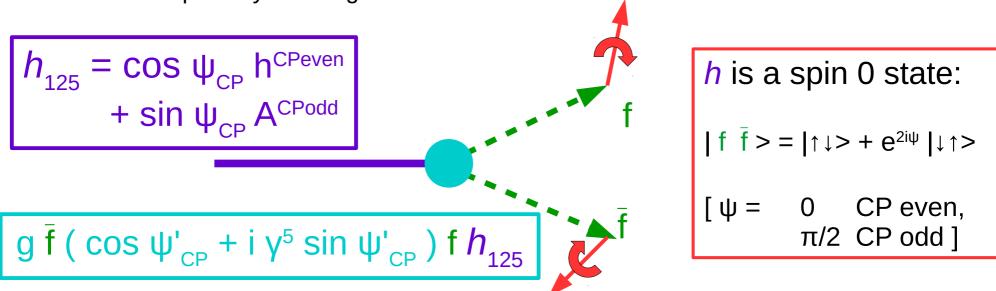


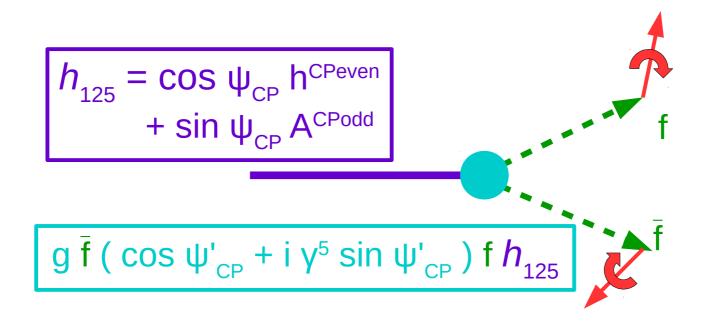
Measuring the CP state of tau lepton pairs from Higgs decay at the ILC

arXiv:1804.01241 submitted to PRD

<u>Daniel Jeans</u>, Graham Wilson ALCW18, Fukuoka



Motivation


Is the 125 GeV Higgs a CP eigenstate ? $h_{125} = \cos \psi_{CP} h^{CPeven} + \sin \psi_{CP} A^{CPodd}$ pure CP even: $\psi_{CP} = 0$ [Standard Model] odd: $\psi_{CP} = \pi/2$ [excluded at LHC] or a mixture?

Do Higgs couplings conserve CP ? e.g. coupling to fermions: L ~ g \bar{f} (cos ψ_{CP} + i γ^{5} sin ψ_{CP}) f H

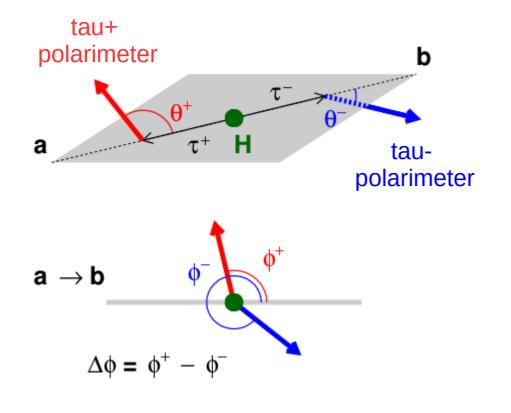
CP conserving coupling maximally violating or partially violating ? $\Psi_{CP} = 0$ [Standard Model] $\Psi_{CP} = \pi/2$

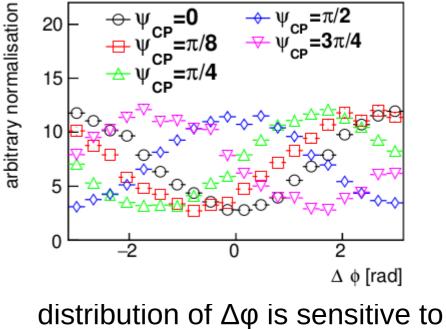
The correlation between spins of Higgs decay products is sensitive to their CP state [in particular, the transverse correlation]

why use tau leptons to measure CP in Higgs sector?

- fermion: tree-level CP effects possible

(H \rightarrow WW, ZZ only via loops)


- unstable fermion:
 - distribution of tau decay products gives
 - access to tau spin direction


optimal estimator = "polarimeter vector"

easy to extract for tau+ \rightarrow (pi+ nu) and tau+ \rightarrow (pi+ pi0 nu) decay modes

- reasonable 6% branching ratio

- clean separation of the two fermion decays (no colour string as in $H \rightarrow bb)$

CP mixing angle ψ_{CP}

amplitude of modulation in $\Delta \phi$ varies from event to event, depending on θ^{\pm} , according to contrast function:

$$c(\theta^+, \theta^-) \equiv \sin \theta^+ \sin \theta^- / (1 + \cos \theta^+ \cos \theta^-)$$

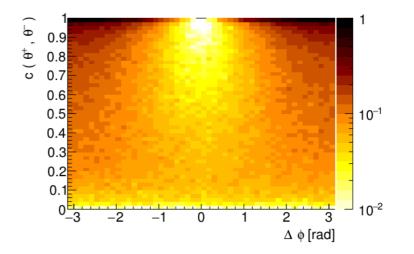
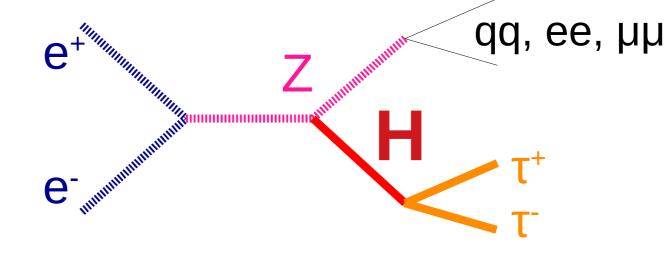



FIG. 3. Two-dimensional distribution of events in $\Delta \phi$ and $c(\theta^+, \theta^-)$ at MC truth level, for the case $\psi_{\rm CP} = 0$.

In this analysis, we measure ψ_{CP} of the tau pair from Higgs decay in a model-independent way, by measuring the phase of the $\Delta \phi$ distribution

we don't try to understand which mechanism creates the mixing: explicitly CP violating coupling, mixed CP mass eigenstate, ... → requires combination with other measurements, model assumptions, ... Analysis uses full ILD simulation signal and SM backgrounds standard data reconstruction (ilcsoft v01-16-02)

SM backgrounds: $e^+ e^- \rightarrow ff H, 4f, 2f$

assume 2 ab⁻¹ of 250 GeV data: "H20-staged"

Full tau reconstruction

to reconstruct tau polarimeter, need full reconstruction of tau decay products, including the neutrino(s)

in hadronic tau decays (# neutrino = 1), if we know the tau production vertex, the impact parameters of charged tau decay products, the p_T of the tau-tau system,

then the neutrino momenta can be reconstructed:

6 unknowns/event:

2 x neutrino 3-momenta

6 constraints/event:

2 x impact parameter defines plane of tau momentum

2 x tau invariant mass

2 from event $p_T [p_x, p_y] \rightarrow$ insensitive to ISR / beamstrahlung

[+ solve two-fold ambiguities from quadratic constraints using tau lifetime, and, only if necessary, using reconstructed tau-tau mass]

vertex detector tracking photon reco. Jet En. Res.

NIM A810 (2016) 51 arXiv:1507.01700 reconstruct Z \rightarrow e e, $\mu \mu$, jets + 2 x (1-prong tau jets) simple preselection

some distributions after reconstruction and preselection:

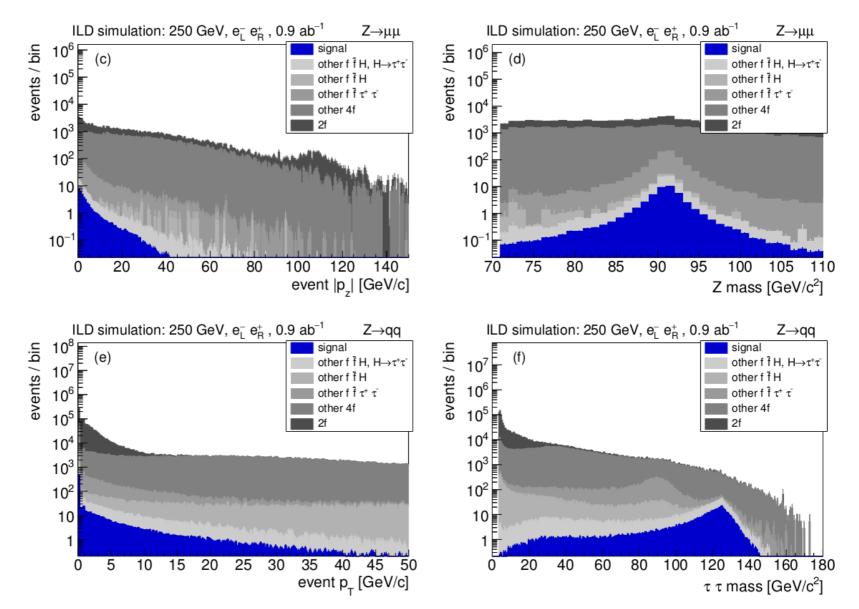
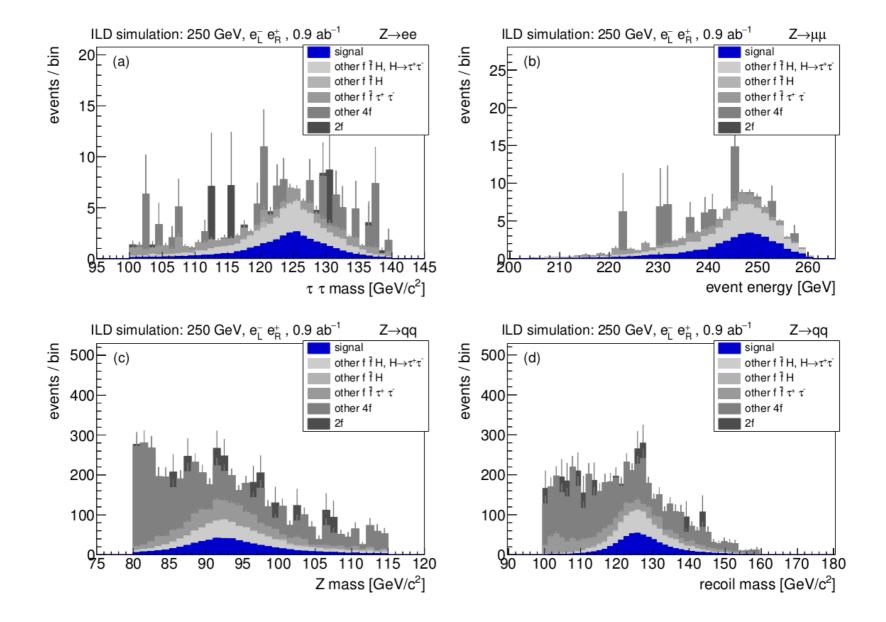


TABLE II. Selection cuts [see text for details; (energies, momenta, and masses) in $\text{GeV}/c^{(0,1,2)}$], signal selection efficiencies ϵ (in %), and number of expected background events (BG) at various stages of the selection in the three selection channels e, μ, q . Event numbers are scaled to the 2 ab⁻¹ of 250 GeV data of the "H20-staged" running scenario.

	le	leptonic preselection			hadronic preselection			
event property	requirement	ϵ_e	ϵ_{μ}		$\mathrm{BG}_{\mathrm{lep}}$	requirement	ϵ_q	$\mathrm{BG}_{\mathrm{had}}$
		100	100		$142 \mathrm{M}$		100	142 M
chg. PFOs	$4 \rightarrow 7$	91	93		$10.1 {\rm M}$	≥ 8	98	$95.7 { m M}$
$Z \rightarrow l l$ candidate	≥ 1	88	90		$1.03 \ {\rm M}$			
isolated prongs						≥ 2	91	$45.8 \mathrm{M}$
opp. chgd. prongs		84	87		903 k		84	33.5 M
min. prong score						> 0.8	77	$14.5 { m M}$
impact par. error	$< 25 \mu m$	76	79		491 k	$< 25 \mu m$	74	13.2 M
extra cone energy		72	75		438 k			
m_Z						$60 \rightarrow 160$	72	5.58 M
$m_{\rm recoil}$						$50 \rightarrow 160$	71	$4.90 \ M$
τ decay mode		63	65		236 k		64	$1.99 { m M}$
full selection		$Z \rightarrow ee$		$Z \rightarrow \mu \mu$			$Z \rightarrow qq$	
event property	requirement	ϵ_{e}	BG_e	ϵ_{μ}	BG_{μ}	requirement	ϵ_q	BG_q
good $\tau^+\tau^-$ fit		57	112 k	59	$99.5 \ k$		58	1.64 M
$m_{\tau\tau}$	$100 \rightarrow 140$	46	618	52	366	$100 \rightarrow 140$	42	43.5 k
event p_T	< 5	43	309	50	268	< 20	42	31.6 k
$m_{\rm recoil}$	> 120	42	252	50	162	> 100	41	23.5 k
m_Z	$80 \rightarrow 105$	41	186	49	136	$80 \to 115$	38	$6.93 \ k$
$ \cos \theta_Z $	< 0.96	40	168	47	124	< 0.96	37	$6.22 \ k$
event p_z	< 40	40	144	47	105	< 40	37	5.26 k
$ \cos \theta_P _{\min}$	< 0.95	40	140	47	102	< 0.95	37	$5.26 \ k$
Sample purity (%)			19		26			11

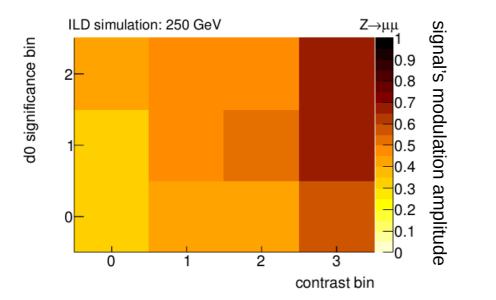
ability to identify tau decay modes

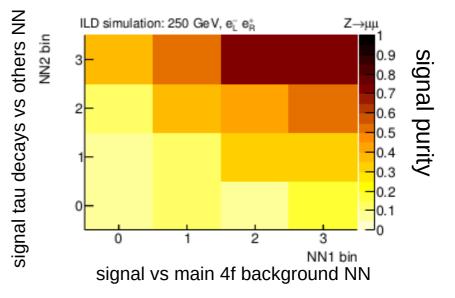
TABLE I. Migrations among τ -pair decay modes, for preselected and reconstructed signal events in which the Z boson decays to either muons or light quarks. All numbers are given in %.

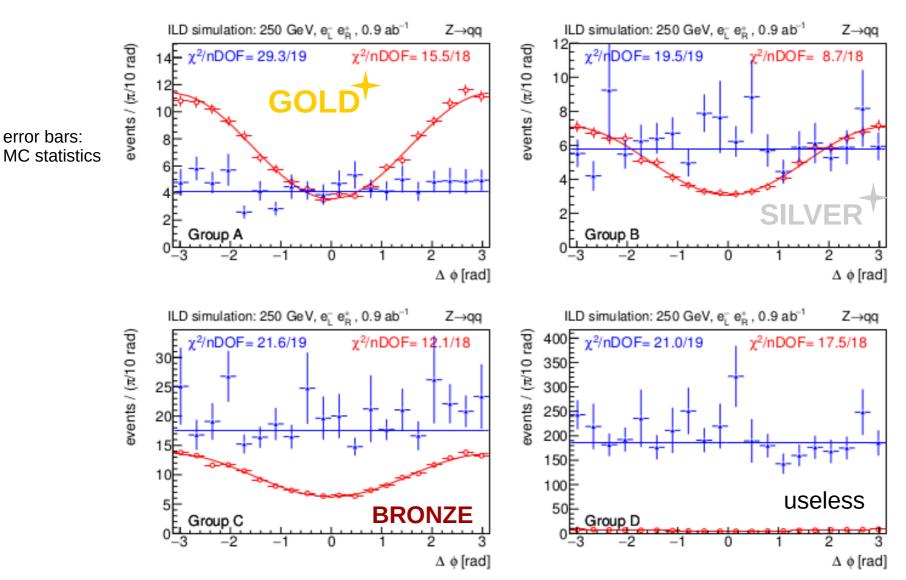

		True decay	
Reco. decay	$(\pi u,\pi u)$	$(\pi u, ho u)$	$(\rho\nu, \rho\nu)$
		$Z \to \mu^+ \mu^-$	
$(\pi u,\pi u)$	93	3	< 1
$(\pi u, ho u)$	7	93	6
$(\rho\nu, \rho\nu)$	< 1	4	94
		$Z \to qq(uds)$	
$(\pi u,\pi u)$	89	6	< 1
$(\pi u, ho u)$	11	89	12
$(\rho\nu, \rho\nu)$	< 1	5	87

reconstructing polarimeter vectors: in tau rest frame

$$\mathbf{h}(\tau^{\pm} \to \pi^{\pm} \nu) \propto \mathbf{p}_{\pi^{\pm}}$$

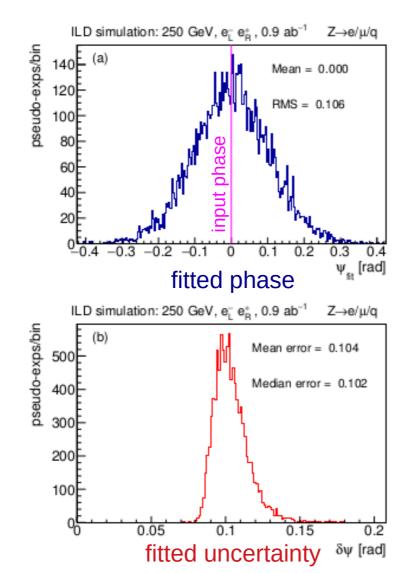

$$\mathbf{h}(\tau^{\pm} \to \pi^{\pm} \pi^{0} \nu) \propto m_{\tau} (E_{\pi^{\pm}} - E_{\pi^{0}}) (\mathbf{p}_{\pi^{\pm}} - \mathbf{p}_{\pi^{0}})
 +2(p_{\pi^{\pm}} + p_{\pi^{0}})^{2} \mathbf{p}_{\nu},$$
(6)
(7)


some distributions after selection

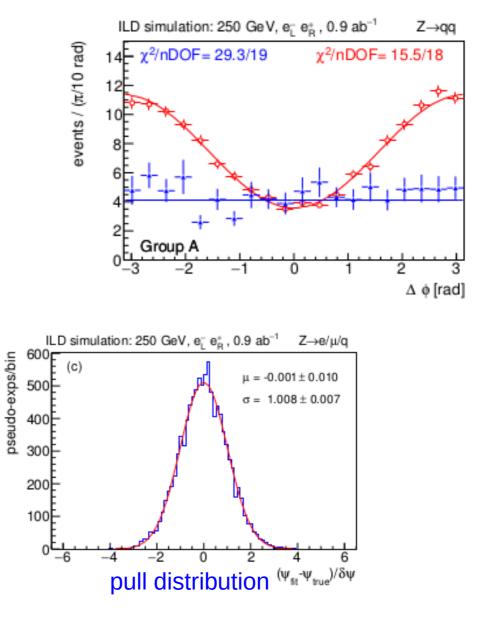

group events according to expected sensitivity, based on:

- longitudinal component of polarimeters (contrast function)
- tau decay prongs' d0 measurement significance
- output of simple NN [6 inputs] (signal vs. main 4f bgs)
- output of simple NN [4 inputs] (signal tau decays vs. others)
- \rightarrow intrinsic sensitivity
- \rightarrow reconstruction quality
- \rightarrow background contamination
- \rightarrow tau decay mis-identification

CP sensitive observable $\Delta \phi$ in different event sensitivity bins


signal background

phase of signal distributions is sensitive to CP


estimating measurement sensitivity

unbinned maximum likelihood fit: simultaneously in all sensitivity bins and selection channels fit a single parameter: the phase of $\Delta \phi$ distribution

perform series of toy pseudo-experiments using simulated distributions

results of 10k pseudo-exps

predicted sensitivity on $\psi_{_{\rm CP}}$ under various conditions

ſL	been	ı pol.	notes	$\delta\psi_{\mathrm{CP}}$		
[ab ⁻¹]	e ⁻	e ⁺	notes	[mrad]		
1.0	0	0	full analysis	116		
1.0	0	0	only $Z \rightarrow ee$	450		
1.0	0	0	only $Z \rightarrow ee$ only $Z \rightarrow \mu\mu$	412		
-	_	-	· //			
1.0	0	0	only $Z \rightarrow qq$	122		
1.0	0	0	only $(\pi\nu, \pi\nu)$	387		
1.0	0	0	only $(\pi\nu, \rho\nu)$	198		
1.0	0	0	only $(\rho\nu, \rho\nu)$	166		
1.0	-1.0	+1.0	pure $e_L^- e_R^+$	97		
1.0	+1.0	-1.0	pure $e_R^- e_L^+$	113		
1.0	0	0	$\sigma_{ZH} + 20\%$	104		
1.0	0	0	$\sigma_{ZH} - 20\%$	133		
1.0	0	0	no bg.	76		
1.0	0	0	perf. pol.	100		
1.0	0	0	no bg., perf. pol./eff.	25		
H20-staged: 250 GeV, 2 ab ⁻¹						
0.9	-0.8	+0.3	only $e_L^- e_R^+$	102		
0.9	+0.8	-0.3	only $e_R^- e_L^+$	120		
0.1	-0.8	-0.3	only $e_L^- e_L^+$	359		
0.1	+0.8	+0.3	only $e_R^- e_R^+$	396		
2.0	mi	xed	full analysis	75		

TABLE IV. Estimated experimental precision $\delta \psi_{CP}$ on the CP phase in different scenarios.

sanity check: output = input phase

sensitivity on Ψ_{CP} : 2/ab, all channels: 75 mrad

dominated by events with hadronic Z decay

perfect reconstruction, selection: 25 mrad sensitivity

summary

demonstrated, using full detector simulation and backgrounds, that CP mixing in tau-pair from Higgs decays can be determined to 75 mrad ~ 4.3 deg using 2 ab-1 of ILC250 data

potential for improved analysis methods to significantly improve results [ultimately \rightarrow 25 mrad]

using only a few tau decay modes

 \rightarrow can probably increase sensitivity by also using other modes

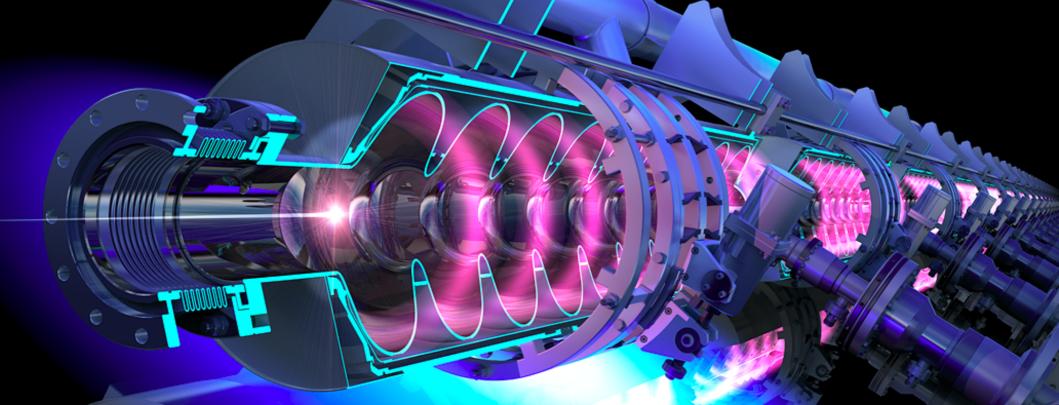
backup

International Linear Collider

electron-positron collisions

Main Linac

initial collision energy 250 GeV \rightarrow Higgs factory linear design allows relatively simple energy upgrade in the future


longitudinally polarised beams

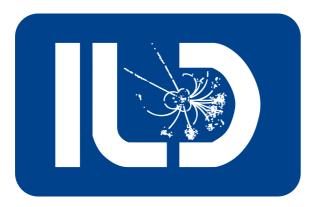
Technical Design Report published 2012

undergoing detailed review in MEXT

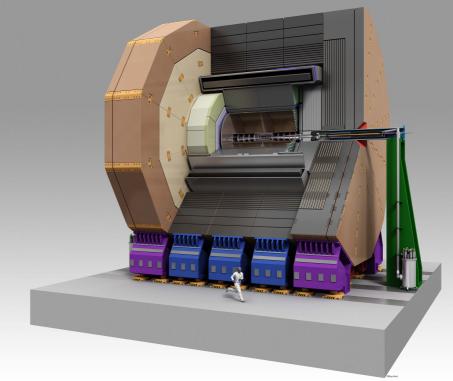
expect project decision from JP government in next few few months

Main Linac

ILC Candidate Location: Kitakami Area

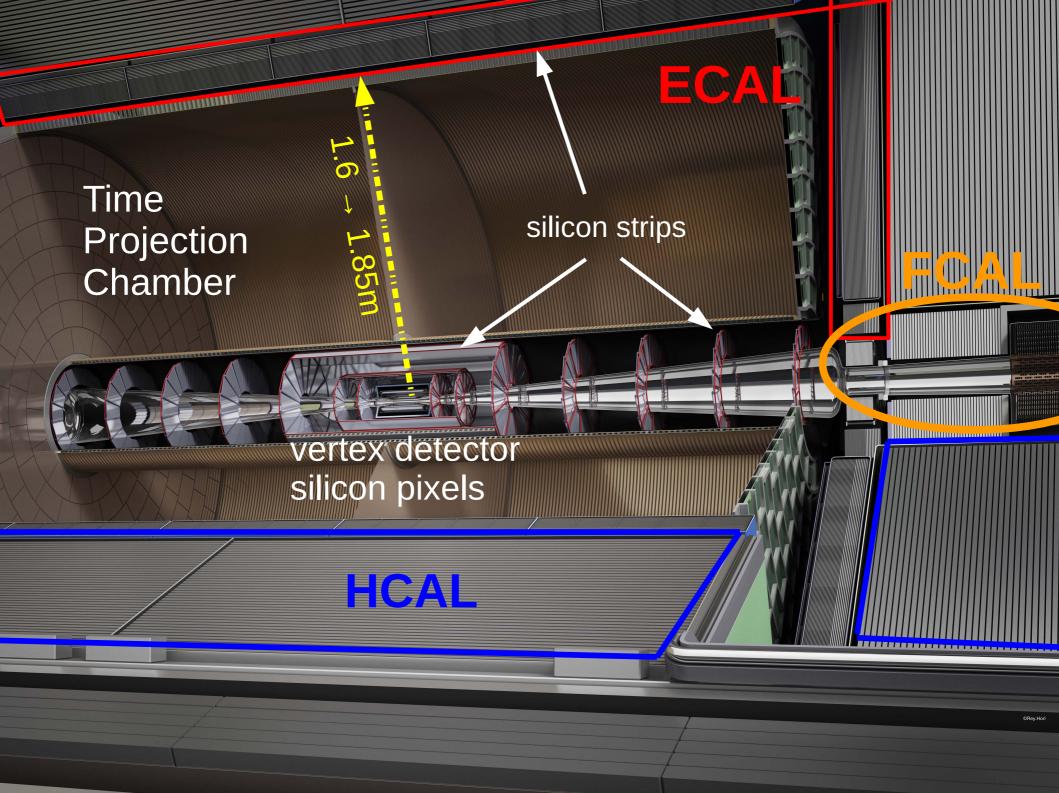

Kaname Kodashima

"Lots of encounters through the ILC"


Futago Elementary School, Kitakami City

Comment: "I drew my wish that there would be a lot of new encounters through the ILC everyone is hoping for."

> 2016 ILC Poster Contest Merit Award (1^{st~3rd} grade entries)


International Large Detector

One of two detector designs being studied for the ILC dominated by groups from Europe and Japan

Design principles

excellent vertexing: identification of b, c, τ high precision and lightweight vertex detector highly efficient and precise charged particle tracking large TPC in ~3.5 T field excellent jet energy resolution make best use of dominant hadronic decays of W, Z, H highly granular calorimeters

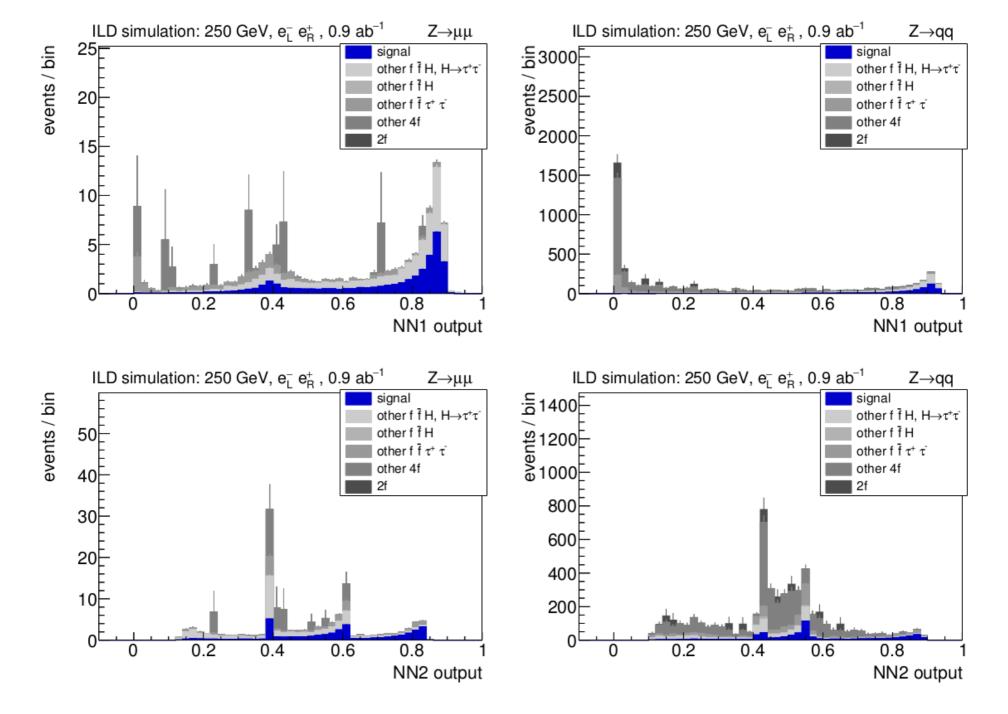


FIG. 7. Distributions of the two Neural Network outputs in the muon and hadronic selection channels. The structure in the output of NN2 is due to the three different combinations of τ lepton decay modes. Distributions are normalized to 0.9 ab⁻¹ of data in the $e_L^- e_R^+$ beam polarization.