

Measurement of the ZH cross section using Z->qq in ILD Guillaume Garillot

ALCW2018 May 28 – June 1 2018 UNIVERSITÉ DE LYON

- At $\sqrt{s} = 250 \text{ GeV}$, the higgsstrahlung process is the dominant higgs production channel
- It is usually considered for Z → µµ and Z->ee decays as it provides clear event topology
- It is however limited by the small branching ratio of Z \rightarrow II (~3 % for each lepton)
- On the opposite, the Z → qq provides a lot more statistics (br ~ 70%), but the event topology is not as clean as for Z leptonic decays

- Event sample :
 - DBD samples
 - ILCSoft : v02-00
 - ILD Model : ILD_I5_o2_v02 (SDHCAL option)
 - See Bo Li's talk on Thursday for ILD_I5_o2_v02 performances
 - Signal :
 - qqH
 - Backgrounds :
 - Z->qq
 - WW->qqqq
 - WW->qqlv ($I = \mu / \tau$)
 - ZZ->qqqq
 - ZZ->qqll (I = μ / τ)
 - ZZ->qqvv (μ / τ only but does not really matter here...)
 - qqee and qqev events not processed yet
 - No background overlay

- Depending on the higgs decay channel, the events can have different topologies :
 - For example H->bb will give a 4-jet final state ,
 H->WW->qqτv 5-jet final state ,
 H->WW->qqqq and H->ZZ->qqqq 6-jet final state
- Jet clustering is performed using Durham algorithm with a fixed $y_{cut} = 0.003$ in order to not $y_{ij} = \frac{2\min\{E_i^2, E_j^2\}}{E_{vis}^2} (1 \cos\theta_{ij})$ constrain the number of jets
- The jet pair with invariant mass closest to m_Z is identified as the Z
- The recoil mass is calculated using the Z jet pair : $m_{rec}^2 = (\sqrt{s} E_{Dijet})^2 p_{Dijet}^2$

- Preselection cuts :
 - Event forced in 2 jets
 - Reject event if M_{2jet} <100 GeV

- Reject if $|\cos \theta_{miss}| > 0.9$

- Preselection cuts :
- Reject events with :
 - P_T of selected Z diJet < 20 GeV

- Preselection cuts :
 - Event forced in 4 jets
 - Find the jet combination that minimises :
 - $X^2 = (m_{12} m_W)^2 + (m_{34} m_W)^2$
 - Reject event if :
 - 70 GeV < m_{12} < 90 GeV and
 - 70 GeV < m₃₄ < 90 GeV
 - Find the jet combination that minimises :
 - $X^2 = (m_{12} m_Z)^2 + (m_{34} m_Z)^2$
 - Reject event if :
 - 80 GeV < m_{12} < 100 GeV and
 - 80 GeV < m₃₄ < 100 GeV

- Accept event if :
 - 70 GeV < m_Z < 110 GeV and
 - $100 \text{ GeV} < m_{rec} < 200 \text{ GeV}$

• BDT training :

 $\cos\theta_Z$: production angle of the selected Z di-jet system

 θ_{Z12} : angle between the two jets of the selected Z di-jet system

0.5

2.5

 θ_{12}

• BDT training :

-log10(y_{23}), -log10(y_{34}): Durham jet resolution parameters

- BDT Training :
 - Variables used :
 - Zmass
 - $\cos\theta_Z$

	 P(e⁻,e⁺) = (+80 %,-30%) 			
	Channel	ε _{presel}	ε _{BDT}	
limin	ZH	50,11%	38,46%	
pren.	WW->qqlv	17,29%	1,07%	
	WW->qqqq	9,71%	6,12%	
	Z->qq	1,40%	0,29%	
	ZZ->qqll	9,63%	3,43%	
	ZZ->qqqq	15,61%	9,90%	
= -0.012	ZZ->qqvv	3,86%	0,07%	

• $P(e^{-},e^{+}) = (-80 \%,+30\%)$					
Channel	٤ _{presel}	ε _{BDT}			
ZH	50,06%	38,35%			
WW->qqlv	16,89%	1,03%			
WW->qqqq	9,47%	5,62%			
Z->qq	1,88%	0,45%			
ZZ->qqll	11,47%	4,35%			
ZZ->qqqq	17,24%	11,33%			
ZZ->qqvv	4,80%	0,08%			

• P(e⁻,e⁺) = (-80 %,+30%)

• P(e⁻,e⁺) = (+80 %,-30%)

Preliminary $(e, e) = (-80, \%, +30\%)$					
		Channel	e _{presel}	e _{BDT}	Δe/e
		H->ss	44.0%	35.5%	-7.5%

 $D(a^{-}a^{+})$ (00 0/ . 000/)

Channel	e _{presel}	e _{BDT}	Δe/e
H->ss	49,2%	36,7%	-4,6%
H->cc	49,0%	38,6%	0,2%
H->bb	49,2%	38,3%	-0,5%
Η->μμ	49,3%	24,6%	-36,0%
Η->ττ	48,5%	24,6%	-36,1%
H ->gg	51,6%	42,1%	9,4%
Η->γγ	50,8%	35,6%	-7,3%
H->ZZ	49,3%	35,5%	-7,8%
H->WW	52,5%	37,5%	-2,5%
WW->qqqq	52,8%	44,6%	16,0%
WW->qqlv	50,4%	34,2%	-11,1%
WW->IvIv	60,2%	20,6%	-46,5%
Η->Ζγ	55,2%	36,7%	-4,5%

Channel	e _{presel}	e _{BDT}	Δe/e
H->ss	44,0%	35,5%	-7,5%
H->cc	50,5%	41,1%	7,2%
H->bb	49,2%	39,4%	2,8%
Η->μμ	43,2%	28,8%	-24,8%
Η->ττ	48,3%	26,3%	-31,5%
H ->gg	50,8%	42,2%	10,2%
Η->γγ	49,1%	36,3%	-5,4%
H->ZZ	49,5%	35,6%	-7,2%
H->WW	52,7%	39,1%	2,1%
WW->qqqq	53,2%	46,0%	19,8%
WW->qqlv	50,3%	35,8%	-6,8%
WW->IvIv	60,5%	23,4%	-39,0%
Η->Ζγ	52,9%	34,9%	-9,1%

- Huge inconsistency for selection efficiency of H-> $\mu\mu$ and H-> $\tau\tau$
 - Not seen in previous ZH (Z->qq) studies
 - Maybe related to a issue with treatment of lepton pairs in DD4hep
- Inconsitency of H->WW different decay modes due to the inclusion of -log10(y₂₃) and -log10(y₃₄) parameters

- Reduced training :
 - Variables used :
 - Zmass
 - $\cos\theta_Z$
 - θ_{Z12}

	 P(e⁻,e⁺) = (+80 %,-30%) 			
	Channel	ε _{presel}	ε _{BDT}	
limin	ZH	50,11%	41,36%	
pren.	WW->qqlv	17,29%	4,86%	
	WW->qqqq	9,71%	6,61%	
	Z->qq	1,40%	0,57%	
	ZZ->qqll	9,63%	5,11%	
	ZZ->qqqq	15,61%	11,42%	
= -0.03	ZZ->qqvv	3,86%	2,32%	

 $BDT_{score} cut = -0.03$ #normalized events 0.05 Signal Background 0.04 Prelimin 0.03 0.02 0.0 -0.25 0.05 0.1 BDT_{score} -0.2 -0.15 -0.1 -0.05 0.1 0

P(e ⁻ ,e ⁺) =	: (-80 %	,+30%)
--------------------------------------	----------	--------

Channel	ε _{presel}	ϵ_{BDT}
ZH	50,06%	40,38%
WW->qqlv	16,89%	4,49%
WW->qqqq	9,47%	6,07%
Z->qq	1,88%	0,82%
ZZ->qqll	11,47%	6,06%
ZZ->qqqq	17,24%	12,54%
ZZ->qqvv	4,80%	2,83%

• Reduced training :

- Reduced training :
 - $P(e^{-},e^{+}) = (+80 \%,-30\%)$

Channel	e _{presel}	e _{BDT}	Δe/e
H->ss	49,2%	41,0%	-0,9%
H->cc	49,0%	41,3%	-0,1%
H->bb	49,2%	41,3%	-0,2%
Η->μμ	49,3%	30,5%	-26,2%
Η->ττ	48,5%	35,8%	-13,4%
H ->gg	51,6%	44,4%	7,4%
Η->γγ	50,8%	37,9%	-8,3%
H->ZZ	49,3%	40,3%	-2,7%
H->WW	52,5%	42,1%	1,9%
WW->qqqq	52,8%	45,2%	9,4%
WW->qqlv	50,4%	38,7%	-6,4%
WW->IvIv	60,2%	43,0%	3,9%
H->Zγ	55,2%	47,7%	15,3%

		-	
Dral	limi	ina	KV/
		lla	

rv			
Channel	e _{presel}	e _{BDT}	Δe/e
H->ss	44,0%	36,2%	-10,4%
H->cc	50,5%	42,9%	6,3%
H->bb	49,2%	41,2%	2,0%
Η->μμ	43,2%	31,0%	-23,3%
Η->ττ	48,3%	35,8%	-11,4%
H ->gg	50,8%	43,3%	7,2%
Η->γγ	49,1%	37,6%	-7,0%
H->ZZ	49,5%	40,2%	-0,4%
H->WW	52,7%	42,3%	4,8%
WW->qqqq	53,2%	45,6%	12,9%
WW->qqlv	50,3%	38,7%	-4,0%
WW->lvlv	60,5%	43,2%	6,9%
H->Zγ	52,9%	43,8%	8,4%

• $P(e^{-},e^{+}) = (-80 \%,+30\%)$

• Inconsitency of H->WW different decay modes greatly reduced

- Study of higgs recoil mass in HZ (Z->qq) with ILD_I5_o2_v02 model has started
- At √s = 250 GeV and 500fb⁻¹ integrated luminosity, the statistical error on the σ_{ZH} cross section reaches ~1.6 % using P(e⁻,e⁺) = (+80 %,-30%) polarization
- However, the selection efficiency is not consistent with respect to higgs
 decay mode
 - Inconsistencies up to ~15% (H-> $Z\gamma$)
 - Difficult to conclude on the H->µµ case due to very low statistics and ILCSoft issue
 - Need to process a dedicated H->µµ sample with more statistics
- Plans :
 - Add qqev and qqee background
 - Reprocess events with patched ILCSoft to investigate the H->ττ / H->μμ cases
 - Improve on systematics uncertainty by applying categorization / optimizing cuts