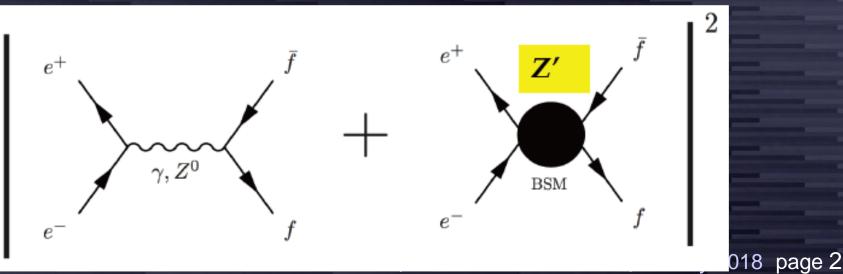
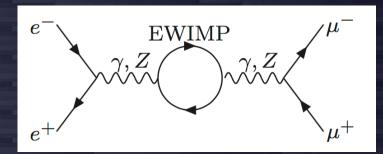
Precise measurement of two-fermion final states in 250 GeV ILC for BSM


Taikan Suehara, H. Yamashiro (Kyushu)


2-fermion final states in LC

- Simple electroweak process
 - Precise QED calculation
 - High cross section
 - \rightarrow O(0.1%) cross section measurement possible
 - Differential cross section (production angle)
 - \rightarrow Sensitive to BSM models (and separation)

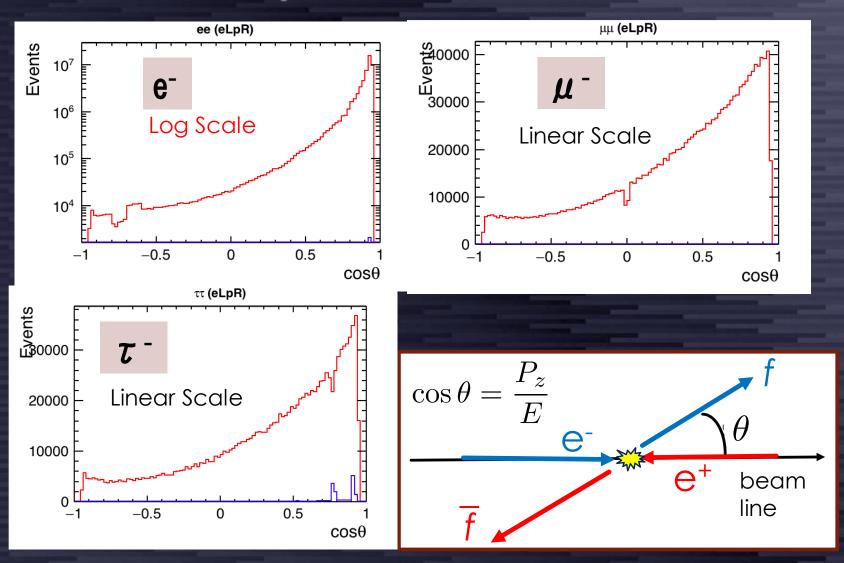
BSM models

- Z' models
 - -SSM
 - ALR (Alternative Left-Right model)
 - $-E_6$ models (motivated from string theory)
 - Gauge Higgs Unification (Hosotani model)
- General WIMP search
 - Determined by spin of EWIMP

Conditions

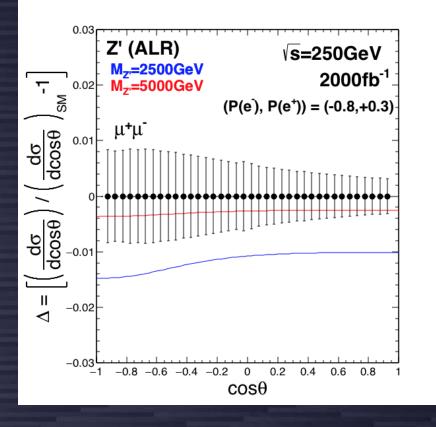
Standard H-20 like scenario in 250 GeV

Total Luminosity	(e ⁻ _L e ⁺ _R)	(e⁻ _R e⁺ _L)
2000 fb ⁻¹	900 fb ⁻¹	900 fb ⁻¹

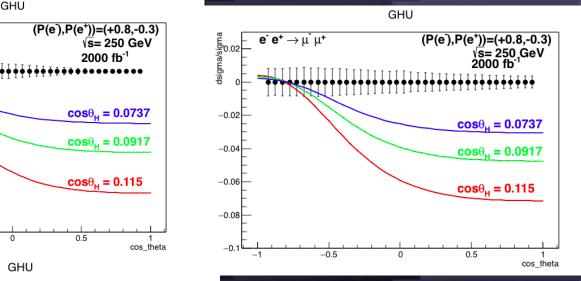

Polarization: 80% (e⁻), 30% (e⁺) ILD full simulation (DBD sample)

Leptonic final states

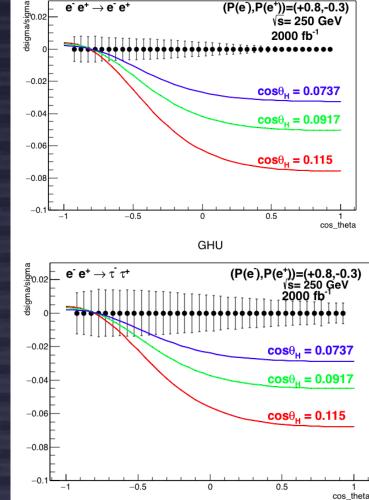
Hadronic final states


signal	Background	signal	Background
e⁻e⁺→ e⁻e⁺	 2f - μ⁻μ⁺ τ⁻τ⁺ 4f - Leptonic 	e⁻e⁺→ bb	 2f - qq (q = u, d, s, c) 4f - hadronic ,semiLeptonic
$e^-e^+ \rightarrow \mu^-\mu^+$	 2f - e⁻e⁺ τ⁻τ⁺ 4f - Leptonic 	e⁻e⁺→ cc	 2f - qq (q = u, d, s, b) 4f - hadronic ,semiLeptonic
$e^-e^+ \rightarrow \tau^- \tau^+$	 2f - e⁻e⁺, μ⁻μ⁺ 4f - Leptonic - 2f-qq 		

Leptonic channels

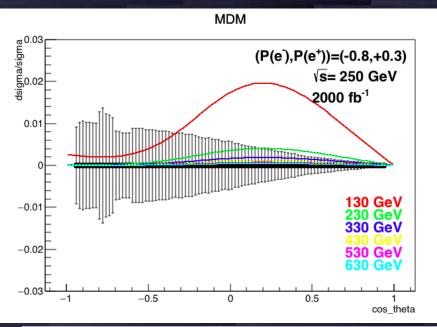

Leptonic channels – BSM sensitivity

Example: ALR Z' with μ channel



$\chi^2(BS)$	$\begin{split} \chi^2(\text{BSM}) = \sum_i \left\{ & \left(\frac{\delta \sigma_i(\text{BSM})}{\sigma_i(\text{SM})} / \frac{S_i}{\sqrt{S_i + N_i}} \right)^2 + 1 \right\} \\ & \text{deviation} \\ & \text{from BSM} \end{split} \text{only SM} \end{split}$				
	BSM model	mass reach (3 sigma)			
	SSM	2.8 TeV			
	ALR	4.0 TeV	No. of Concession, name		
	Х	2.9 TeV	-		
	Ψ	1.4 TeV			
	η	1.8 TeV	-		

Leptonic channels – GHU sensitivity


Clear separation for any favorable θ_{H}

e

'e⁺ → e' e⁺

Leptonic channels - EWIMP

	mass reach (3σ)
Higgsino	150 GeV
MDM	330 GeV
Wino	190 GeV

Mass reach of direct search: slightly less than 125 GeV

Higher mass reach is observed with 2I final states. (but not so satisfactory)

Further improvement should be investigated

Hadronic channels - difficulties 2x more statistics, but... Jet charge identification - Secondary tracks Should increase efficiency - (This study is not optimized) Charge assignment Assign positive and negative jets - We can use charge of two jets Treatment of angular smearing Theoretical calculation Taikan Suehara et al, ALCW2018 in Fukuoka, 29 May 2018 page 9

Charge assignment

Jet1	Jet2	条件1	+	0	_	条件 2	+	0	-
2	2	В	57042	30046	29545	Α	14822	7459	7765
2	2	Α	63328	24894	28411	В	10369	7459	7066
2	1	В	76748	60794	44257	Α	24591	21520	14683
2	1	Α	83417	55611	42771	В	18590	21520	15501
2	0	В	19239	67602	9065	Α	29456	19469	18677
2	0	Α	42781	29199	23926	В	6000	19469	3730
1	1	В	28157	31528	17870	С	15262	4985	11281
1	0	В	35064	39606	23072	С	18700	6355	14551
1	0	С	46805	15357	35580	В	5299	6355	3703
0	0	С	18113	5532	13611	-			

Jet1	Jet2	条件 3	+	0	-	efficiancy	purity
2	2	С	3538	1231	2690	64.65%	65.34%
2	2	С	3538	1231	2690	66.22%	66.93%
2	1	С	10310	3542	7668	61.41%	62.63%
2	1	С	10310	3542	7668	61.78%	63.01%
2	0	С	9045	3217	7207	60.20%	62.29%
2	0	С	9045	3217	7207	60.29%	62.39%
1	1	-				55.98%	59.83%
1	0	-				55.01%	58.83%
1	0	-				53.31%	57.01%
0	0	-				48.62%	57.10%

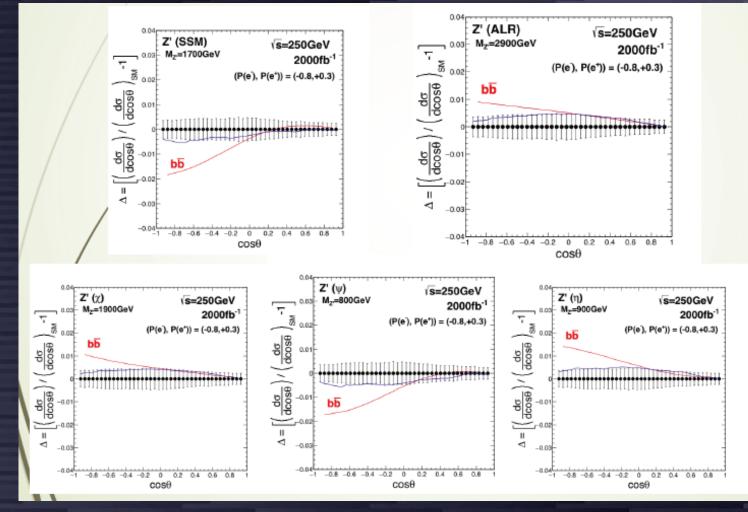
Performance by number of rec. vtx

• 2-jet clustering (LCFIPlus)

- B-tagging (LCFIPlus)
- No vertex recovery (yet)
- Select "positive" and "negative" jets
 A. Charge sum of tracks of 2nd & 3rd vtx
 - B. Charge sum of tracks of 2nd vtx only
 C. Charge sum of all tracks
- ~60% efficiency obtained

Angular distribution

b


h1 Events 0000 Entries 27018 4500 0.1977 Mean 0.566 RMS 4000 3500 15000 3000 2500 10000 $[]_{\mathcal{M}} [\mathcal{M}^{\mathcal{M}}]$ 2000 1500 5000 1000 500 0 -0.5 0.5 0 -1 -0.6 -0.2 0.2 0.6 0.8 cosθ

Red: true, blue: wrong sign, green: bkg.

Taikan Suehara et al, ALCW2018 in Fukuoka, 29 May 2018 page 11

cbar

bb for Z' search

Red: true assignment, blue: current assignment Big degradation due to mis-assignment \rightarrow need to improve

Results on Z'

BSM model	mass reach (lepton)	(b)	(c)
SSM	2.8 TeV	2.7 TeV	2.7 TeV
ALR	4.0 TeV	2.7 TeV	2.8 TeV
Х	2.9 TeV	2.0 TeV	1.4 TeV
Ψ	1.4 TeV	1.5 TeV	1.4 TeV
η	1.8 TeV	1.2 TeV	1.4 TeV

No significant gain from leptons

Summary & todo

- Z' mass reach on SSM, ALR → several TeV
 Should be slightly improved, but not 10 TeV
- GHU Z': Full coverage of favorable region $\Box \theta_H > 0.05$
 - Model identification is the next step
- General WIMP: slightly larger than direct
- Todo
 - Vertex track recovery

	mass reach (3σ)
Higgsino	150 GeV
MDM	330 GeV
Wino	190 GeV

- Revisiting method to calculate deviation
- Will resume study with new students