Experimental techniques for Higgsinos with $\Delta(M) \sim 1 \text{ GeV}$

Mikael Berggren¹,S. Sasikumar¹, J. List¹, H. Sert¹, F. Brümmer, G. Moortgat-Pick², T. Robens³, K. Rolbiecki^{4,5} on behalf ILD

¹DESY, Hamburg, ²Universität Hamburg, ³TU Dresden, ⁴IFT, Unviversity of Warsaw, ⁵IFT-UAM/CSIC, Madrid.

ALCW, Fukuoka, May, 2018

Mikael Berggren (DESY)

ALCW18 2 / 20

ELE DOG

イロト イポト イヨト イヨト

Natural SUSY: Light, degenerate higgsinos

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- \Rightarrow Low fine-tuning \Rightarrow
 - $\mu = \mathcal{O}(\text{weak scale}).$
- If multi-TeV gaugino masses:

 - $M_{\tilde{\chi}^0_{1,2}}, M_{\tilde{\chi}^\pm_1} \approx \mu$
 - Degenerate ($\Delta M \leq 1 \text{ GeV}$)

• Ex. of UV model giving this: Hybrid gauge-gravity mediation.

F. Brümmer and W. Buchmiluller, JHEP 1107 (2011) 010 [arXiv:1105.0802[hep-ph]] & JHEP 1205 ('12) 006 [arXiv:1201.4338[hep-ph]]

Natural SUSY: Light, degenerate higgsinos

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
 - $\mu = O(\text{weak scale}).$
- If multi-TeV gaugino masses:

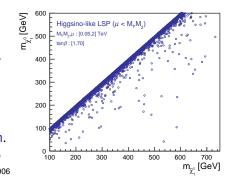
 - $\bullet \ {\it M}_{\tilde{\chi}^0_{1,2}}, {\it M}_{\tilde{\chi}^\pm_1} \approx \mu$
 - Degenerate ($\Delta M \leq 1 \text{ GeV}$)

• Ex. of UV model giving this: Hybrid gauge-gravity mediation.

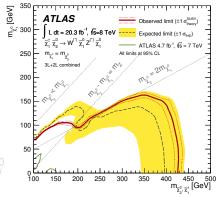
F. Brümmer and W. Buchm¹uller, JHEP 1107 (2011) 010 [arXiv:1105.0802[hep-ph]] & JHEP 1205 ('12) 006 [arXiv:1201.4338[hep-ph]]

Natural SUSY: Light, degenerate higgsinos

Natural SUSY:

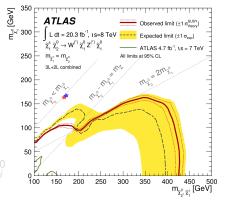

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $\bullet \ {\it M}_{\tilde{\chi}^0_{1,2}}, {\it M}_{\tilde{\chi}^\pm_1} \approx \mu$
 - Degenerate ($\Delta M \leq 1 \text{ GeV}$)


• Ex. of UV model giving this: Hybrid gauge-gravity mediation.

F. Brümmer and W. Buchmluller, JHEP 1107 (2011) 010 [arXiv:1105.0802[hep-ph]] & JHEP 1205 ('12) 006 [arXiv:1201.4338[hep-ph]]

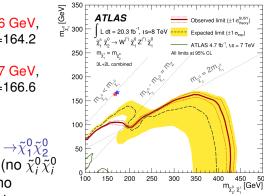
But quite generic: Parameter-scan by T. Tanabe:


- Studied model points:
 - dm1600: Δ(M)=1.6 GeV, m_h=124 GeV, M_{χ̃1}=164.2 GeV.
 - dm770: $\Delta(M)=0.77$ GeV, $m_h=127$ GeV, $M_{\tilde{\chi}_1^0}=166.6$ GeV.
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature)

Detailed simulation study of such a model at DBD:

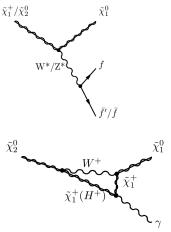
H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

- Studied model points:
 - dm1600: Δ(M)=1.6 GeV, m_h=124 GeV, M_{χ̃1}=164.2 GeV.
 - dm770: $\Delta(M)=0.77$ GeV, $m_h=127$ GeV, $M_{\tilde{\chi}_1^0}=166.6$ GeV.
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature)

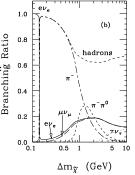


Detailed simulation study of such a model at DBD:

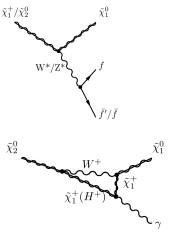
H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

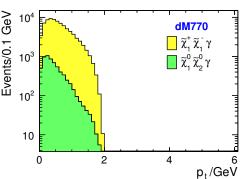

- Studied model points:
 - dm1600: $\Delta(M) = 1.6 \text{ GeV}$, $m_h = 124 \text{ GeV}, M_{\tilde{\chi}^0_1} = 164.2$ GeV.
 - dm770: ∆(M)=0.77 GeV, $m_h=127 \text{ GeV}, M_{\tilde{\chi}^0_+}=166.6$ GeV
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\pm}$ in s-channel (no $\dot{\tilde{\chi}}_{i}^{0}\tilde{\tilde{\chi}}_{i}^{0}$ due to weak isospin, no t-channel due to higgsino nature) Detailed simulation study of such a model at DBD:

H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]



A B A A B A B


- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of $\tilde{\chi}_1^{\pm}$ vs. $\Delta(M)$
- Low p₁ particles only visible signal.

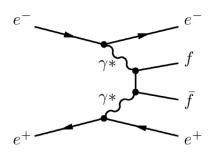

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of ^β₁ ys. Δ(*M*)
 Separate x[±] from x⁰₀: Either
- Low p⊥ particles only visible signal.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of $\tilde{\chi}_1^{\pm}$ vs. $\Delta(M)$
- Low p⊥ particles only visible signal.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of $\tilde{\chi}_1^{\pm}$ vs. $\Delta(M)$
- Low p_⊥ particles only visible signal.

Low p_{\perp} particles only visible signal....

- Multi-peripheral $\gamma\gamma$
 - - -
- ... Looks like the signal!
- To detect: Tag using ISR photon, then look at rest of event:
- γγ and signal, with an ISR photon in addition: Now different !

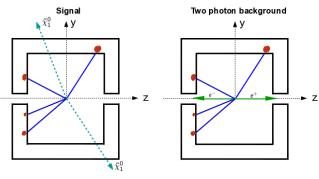

<<p>(日本)

Low p_{\perp} particles only visible signal....

- Multi-peripheral $\gamma\gamma$
- ... Looks like the signal!

. . .

- To detect: Tag using ISR photon, then look at rest of event:
- $\gamma\gamma$ and signal, with an ISR photon in addition: Now different !

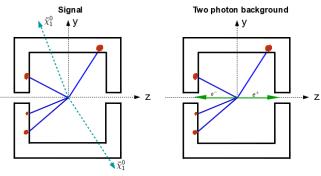

____ ▶

Low p_{\perp} particles only visible signal....

- Multi-peripheral $\gamma\gamma$
- ... Looks like the signal!

. . .

- To detect: Tag using-ISR photon, then look at rest of event:
- γγ and signal, with an ISR photon in addition: Now different !

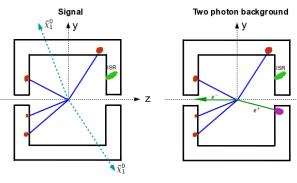


Low p_{\perp} particles only visible signal....

- Multi-peripheral $\gamma\gamma$
- ... Looks like the signal!

. . .

- To detect: Tag using-ISR photon, then look at rest of event:
- γγ and signal, with an ISR photon in addition: Now different !



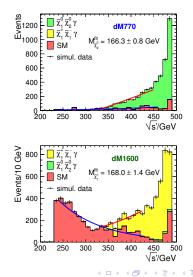
Low p_{\perp} particles only visible signal....

- Multi-peripheral $\gamma\gamma$
- ... Looks like the signal!

. . .

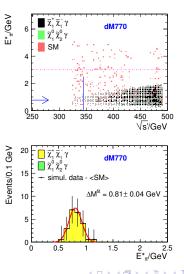
- To detect: Tag using-ISR photon, then look at rest of event:
- γγ and signal, with an ISR photon in addition: Now different !

A (10) A (10)


Light, degenerate higgsinos: Selections

- No seen beam-remnant: No activity in BeamCal.
- Low multiplicity: *N*_{Reconstructed} < 15.
- Require ISR: Exactly one reconstructed γ with $E_{ISR} > 10 \text{ GeV}$ and a $|\cos \theta_{ISR}| < 0.993$.
- Central production: Any other reconstructed particle > 20° away from the beam axis.
- Large fraction of E_{cms} in the LSPs: $E_{miss} > 300 \,\text{GeV}$.
- Sizeable missing p_{\perp} : $|\cos \theta_{miss}| < 0.992$.
- For [˜]χ⁺₁ [˜]χ⁻₁: Semi-leptonic
 For [˜]χ⁰₁ [˜]χ⁰₂: Radiative decay. decay.

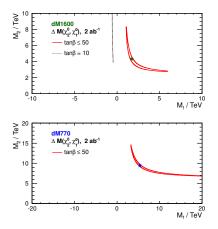
イロト 不得 トイヨト イヨト 正言 ろくの


Light, degenerate higgsinos: Mass and $\Delta(M)$

- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π}^* gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

Light, degenerate higgsinos: Mass and $\Delta(M)$

- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E^*_{π} gives $\Delta(M_{\tilde{\chi}^0_1}, M_{\tilde{\chi}^\pm_1})$ to \sim 100 MeV.



Light, degenerate higgsinos: Model parameters

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

Light, degenerate higgsinos: Model parameters

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

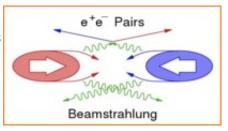
・ 同 ト ・ 日 ト ・ 日 日

Experimental issues

Mikael Berggren (DESY)

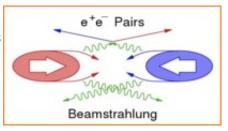
Low $\Delta(M)$ higgsinos

ALCW18 10 / 20

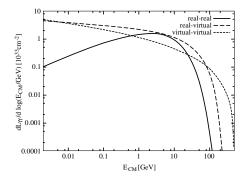

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三回日 のへ⊙

• The ILC beam-spot:

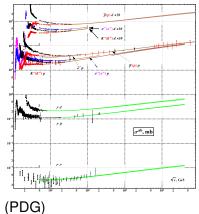
- To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is *extremely* small and dense.
- 5 nm imes 150 nm imes 200 μ m
- \Rightarrow very high E- and B-fields.
- \Rightarrow synchrotron radiation (= X-rays) and e^+e^- pairs.
- Who says "photons meets electrons", says "Compton back-scattering"
- $\Rightarrow \sim$ high E γ :s
- Giving these $m_{\gamma\gamma}$ spectra:


▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

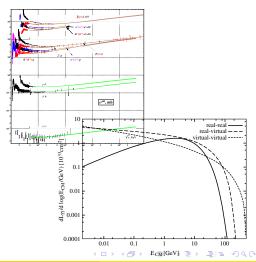
- The ILC beam-spot:
 - To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is *extremely* small and dense.
 - 5 nm imes 150 nm imes 200 μ m
 - \Rightarrow *very* high E- and B-fields.
 - ⇒ synchrotron radiation (= X-rays) and e⁺e⁻ pairs.
 - Who says "photons meets electrons", says "Compton back-scattering"
 - $\Rightarrow \sim$ high E γ :s
- Giving these $m_{\gamma\gamma}$ spectra:



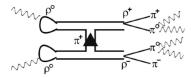
- The ILC beam-spot:
 - To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is *extremely* small and dense.
 - 5 nm imes 150 nm imes 200 μ m
 - \Rightarrow very high E- and B-fields.
 - ⇒ synchrotron radiation (= X-rays) and e⁺e⁻ pairs.
 - Who says "photons meets electrons", says "Compton back-scattering"
 - $\Rightarrow \sim \text{high E } \gamma$:s


• Giving these $m_{\gamma\gamma}$ spectra:

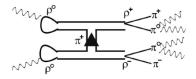
- The ILC beam-spot:
 - To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is *extremely* small and dense.
 - 5 nm \times 150 nm \times 200 μm
 - \Rightarrow *very* high E- and B-fields.
 - ⇒ synchrotron radiation (= X-rays) and e⁺e⁻ pairs.
 - Who says "photons meets electrons", says "Compton back-scattering"
 - $\Rightarrow \sim \text{high E } \gamma$:s
- Giving these $m_{\gamma\gamma}$ spectra:



- Inclusive cross-section for γγ → hadrons : "In ¹/₄₀₀ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High *m*_{γγ}: Multi-peripheral dominates.
- At low *m*_{γγ}: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^{0}\rho^{0} \rightarrow \rho^{+}\rho^{-}$ w/ a π exchange...
- ~ one such in each bunch-crossing!

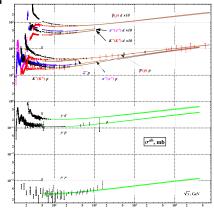


ALCW18 12 / 20


- Inclusive cross-section for γγ → hadrons : "In ¹/₄₀₀ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High *m*_{γγ}: Multi-peripheral dominates.
- At low *m*_{γγ}: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^{0}\rho^{0} \rightarrow \rho^{+}\rho^{-}$ w/ a π exchange...
- ~ one such in each bunch-crossing!

- Inclusive cross-section for γγ → hadrons : "In ¹/₄₀₀ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High *m*_{γγ}: Multi-peripheral dominates.
- At low *m*_{γγ}: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^{0}\rho^{0} \rightarrow \rho^{+}\rho^{-}$ w/ a π exchange...
- ~ one such in each bunch-crossing!

- Inclusive cross-section for γγ → hadrons : "In ¹/₄₀₀ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High *m*_{γγ}: Multi-peripheral dominates.
- At low *m*_{γγ}: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^{0}\rho^{0} \rightarrow \rho^{+}\rho^{-}$ w/ a π exchange...
- ~ one such in each bunch-crossing!



ALCW18 12/20

3 > 4 3

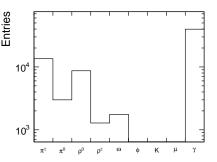
Experimental issues: ILC "pile-up"

- Previous study: Multi-peripheral $\gamma\gamma$ considered (ISR trick, see above).
- However, overlay low-p⊥ hadrons and pairs wasn't. Overlay was not well described at the time.
- Little phase-space ⇒ exclusive modes ⇒ codes like PYTHIA inadequate.
- Theory shaky, need data!
- Dedicated, data-driven, generator (Barklow, Peskin, Chen).

*個 * * ミ * * ミ * 三日

Experimental issues: ILC "pile-up"

- Previous study: Multi-peripheral $\gamma\gamma$ considered (ISR trick, see above).
- However, overlay low-p⊥ hadrons and pairs wasn't.
 Overlay was not well described at the time.
- Little phase-space ⇒ exclusive modes ⇒ codes like PYTHIA inadequate.
- Theory shaky, need data!
- Dedicated, data-driven, generator (Barklow, Peskin, Chen).



(B)

Experimental issues: ILC "pile-up"

- Previous study: Multi-peripheral $\gamma\gamma$ considered (ISR trick, see above).
- However, overlay low-p⊥ hadrons and pairs wasn't.
 Overlay was not well described at the time.
- Little phase-space ⇒ exclusive modes ⇒ codes like PYTHIA inadequate.
- Theory shaky, need data!
- Dedicated, data-driven, generator (Barklow, Peskin, Chen).

Final state particles when $M_{\gamma\gamma}$ < 2GeV

Mikael Berggren (DESY)

ALCW18 13/20

3 > 4 3

Experimental issues: Tackling $\gamma\gamma$

Three-pronged approach:

- Multi-peripheral:
 - Mimics signal, but only virtual γ :s is a problem: Real ones have no p_{\perp} , and can thus not mimic a missing p_{\perp} signal.
 - \Rightarrow Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons.
 - Different production point.

Experimental issues: Tackling $\gamma\gamma$

Three-pronged approach:

- Multi-peripheral:
 - Mimics signal, but only virtual γ:s is a problem: Real ones have no p_⊥, and can thus not mimic a missing p_⊥ signal.
 - \Rightarrow Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons.
 - Different production point.

Experimental issues: Tackling $\gamma\gamma$

Three-pronged approach:

- Multi-peripheral:
 - Mimics signal, but only virtual γ :s is a problem: Real ones have no p_{\perp} , and can thus not mimic a missing p_{\perp} signal.
 - \Rightarrow Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons.
 - Different production point.

<<p>(日本)

Experimental issues: Tackling $\gamma\gamma$

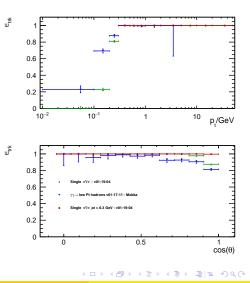
Three-pronged approach:

- Multi-peripheral:
 - Mimics signal, but only virtual γ :s is a problem: Real ones have no p_{\perp} , and can thus not mimic a missing p_{\perp} signal.
 - \Rightarrow Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons.
 - Different production point.

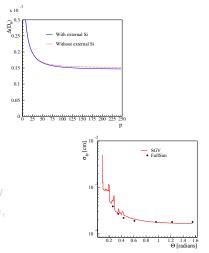
A 回 > A 国 > A 国 > 国 国 のQQ

Experimental issues: Direct reconstruction of overlay?

- At low $M_{\gamma\gamma} \ \pi\pi$ dominates, followed by $\rho^0 \rho^0$
- $\rho^0 \rho^0 \rightarrow (\pi^+ \pi^-) + X$ in \sim 90 % of the cases.
- So: Can we find the pions ?
- Answer: Pretty often !

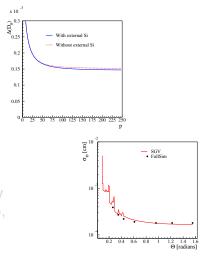

Experimental issues: Direct reconstruction of overlay?

- At low $M_{\gamma\gamma} \ \pi\pi$ dominates, followed by $\rho^0 \rho^0$
- $\rho^0 \rho^0 \rightarrow (\pi^+ \pi^-) + X$ in \sim 90 % of the cases.
- So: Can we find the pions ?
- Answer: Pretty often !

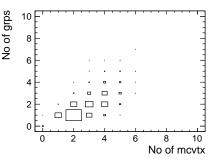

A = A = A = E =
 O Q O

Experimental issues: Direct reconstruction of overlay?

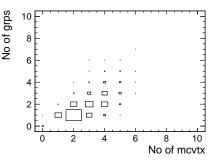
- At low $M_{\gamma\gamma} \pi\pi$ dominates, followed by $\rho^0 \rho^0$
- $\rho^0 \rho^0 \rightarrow (\pi^+ \pi^-) + X$ in \sim 90 % of the cases.
- So: Can we find the pions ?
- Answer: Pretty often !



- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{ip} \sim 1 \ \mu m$), this is a point
- ⇒ vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{x-y} (ie. from the beam-spot), and compatible ip_z.
- Promising...


< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{ip} \sim 1 \ \mu m$), this is a point
- → vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{x-y} (ie. from the beam-spot), and compatible ip_z.
- Promising...

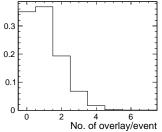

국 국 사 국 수 문 사 문 문

- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{ip} \sim 1 \ \mu m$), this is a point
- → vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{x-y} (ie. from the beam-spot), and compatible ip_z.
- Promising...

3 > 4 3

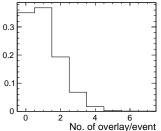
- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{ip} \sim 1 \ \mu m$), this is a point
- → vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{x-y} (ie. from the beam-spot), and compatible ip_z.
- Promising...

So, we can often separate tracks from different vertices.


• But: which is the signal ?

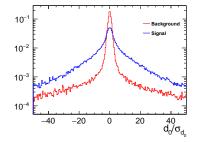
- 1 In $\sim \frac{1}{3}$ of the events, there is no overlay !
- Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
- In DM770, the signal particles comes from detectably displaced vertices.
- Work in progress...

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●


So, we can often separate tracks from different vertices.

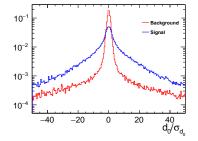
- But: which is the signal ?
 In ~ ¹/₃ of the events, there is no overlay !
 Particle ID: To separate
 - Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In DM770, the signal particles comes from detectably displaced vertices.
- Work in progress...

So, we can often separate tracks from different vertices.


- But: which is the signal ? 1 In $\sim \frac{1}{3}$ of the events, there is 0.3 no overlay ! Particle ID: To separate 0.2 channels, a semi-leptonic 0.1 signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The 0 background never has that. n 2
 - Work in progress...

김 글 제 김 교 글 말 글 날

So, we can often separate tracks from different vertices.


- But: which is the signal ?
 - 1 In $\sim \frac{1}{3}$ of the events, there is no overlay !
 - Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In DM770, the signal particles comes from detectably displaced vertices.
- Work in progress...

(B)

So, we can often separate tracks from different vertices.

- But: which is the signal ?
 - 1 In $\sim \frac{1}{3}$ of the events, there is no overlay !
 - Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In DM770, the signal particles comes from detectably displaced vertices.
- Work in progress...

Conclusions

At ILC:

- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.
- This is being re-visited, including important experimental features not modelled at DBD-times, or not used:
 - γγ → low p⊥ hadron overlay, both modelling and mitigation strategies.
 - Interaction-point variation in z.
 - Displaced vertices in signal.

Conclusions

At ILC:

- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.
- This is being re-visited, including important experimental features not modelled at DBD-times, or not used:
 - $\gamma\gamma \rightarrow \log p_{\perp}$ hadron overlay, both modelling and mitigation strategies.
 - Interaction-point variation in z.
 - Displaced vertices in signal.

<<p>(日本)

Out-look

- Finalise overlay vertex-finding.
- Further detailed studies of possible full reconstruction of overlay events.
- Use the clearly detectable displaced vertex in DM770:
 - Use to separate $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ from $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, instead of semi-leptonic requirement.
 - Use $M_{\ell\ell}$ in $\tilde{\chi}_2^0$ decays.
- Attack the $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ with radiative decays in the presence of $\gamma \gamma \rightarrow \pi^0 \pi^0$.

イロト 不得 トイヨト イヨト 正言 ろくの

Out-look

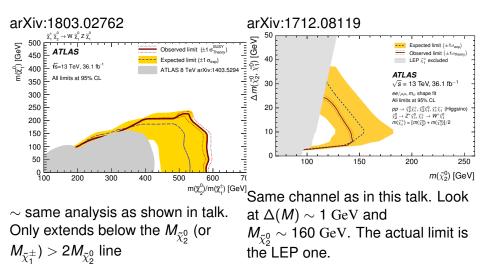
- Finalise overlay vertex-finding.
- Further detailed studies of possible full reconstruction of overlay events.
- Use the clearly detectable displaced vertex in DM770:
 - Use to separate $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ from $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, instead of semi-leptonic requirement.
 - Use $M_{\ell\ell}$ in $\tilde{\chi}_2^0$ decays.
- Attack the $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ with radiative decays in the presence of $\gamma \gamma \rightarrow \pi^0 \pi^0$.

A 目 + E + 4 E + E E - 9 Q (P)

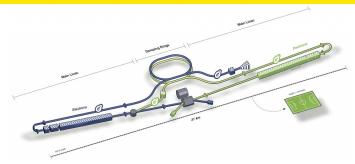
Out-look

- Finalise overlay vertex-finding.
- Further detailed studies of possible full reconstruction of overlay events.
- Use the clearly detectable displaced vertex in DM770:
 - Use to separate $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ from $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, instead of semi-leptonic requirement.
 - Use $M_{\ell\ell}$ in $\tilde{\chi}_2^0$ decays.
- Attack the $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ with radiative decays in the presence of $\gamma \gamma \rightarrow \pi^0 \pi^0$.

Thank You !


Backup

BACKUP SLIDES


New LHC

Latest Atlas (13 TeV, 36 fb^{-1})

The ILC

The ILC

- A linear e^+e^- collider.
- Total length 31 km
- *E_{CMS}* tunable between 200 and 500 GeV, upgradable to 1 TeV.

· < □ > < @ > < E > < E > E = 9 < 0

- Polarisation e^- : 80% (e^+ : \geq 30%)
- $\int \mathcal{L} \sim 250 \mbox{ fb}^{-1}/\mbox{year}$
- 2 experiments, sharing one interaction region.
- Concurrent running with the LHC

The ILC

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlaying event".
 - Low cross-sections wrt. LHC, also for background.
 - \Rightarrow Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

 \Rightarrow for detectors:

• Low background \Rightarrow detectors can be:

Thin : few % X₀ in front of calorimeters :

Very close to IP: first layer of VXD at 1.5 cm.

 Close to 4-c holes for beam-pipe only few cm = 0.2 misr un-covered.
 Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.

Importance of hermeticity for the searches; and rejection Let all one

The ILC

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlaying event".
 - Low cross-sections wrt. LHC, also for background.
 - \Rightarrow Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

 \Rightarrow for detectors:

- Low background ⇒ detectors can be:
 - Thin : few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.

• Importance of hermeticity for the searches: $\gamma\gamma$ rejection !