

Toward the technology choice for the TPC of the ILD detector

Serguei Ganjour

 $CEA\text{-}Saclay/IRFU,\ Gif\text{-}sur\text{-}Yvette,\ France$

Fukuoka, Japan May 28 - June 1, 2018

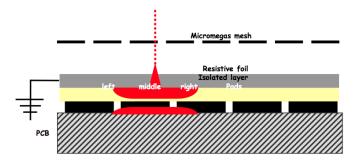
TPC is the central tracker for International Large Detector (ILD)

- Is Large number of 3D points
 - continuous tracking
- Particle identification
 - \Rightarrow dE/dx measurement
- Low material budget inside the calorimeters (PFA)
 - \blacksquare barrel: $\sim 5\% {
 m X}_0$
 - ${}^{\scriptstyle{\scriptstyle{|||}||}}$ endplates: $\sim 25\% X_0$
- \bowtie Two gas amplification options:
 - ➡ Gas Electron Multiplier (GEM)
 - MicroMegas (MM)
 - \rightarrow pad-based charge dispersion readout
 - \rightarrow direct readout by the TimePix chip

IS TPC Requirements in 3.5 T

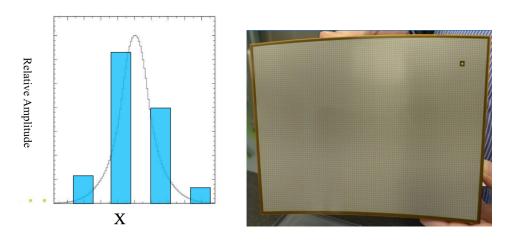
- **Momentum resolution:**
 - $\rightarrow \delta(1/p_{\rm T}) \le 9 \times 10^{-5} {\rm GeV^{-1}}$
- **Single hit resolution:**
 - → $\sigma(\mathbf{r}\phi) \le 100 \mu \mathbf{m}$ (overall)
 - $\rightarrow \sigma(Z) \simeq 400 \mu m$
- **Tracking efficiency:**
 - \blacktriangleright 97% for $p_T \geq 1 GeV$
- \Rightarrow dE/dx resolution: 5%

S.Ganjour


- IN The feasibility of a MPGD TPC for the LC was demonstrated
 - ILD detector baseline document was completed in March 2013
- Image Main issues towards final design were pushed forward with Large Prototype (LP) of the TPC in the past five years
 - is first test beam experiment of the large -aperture GEM-like gating device
 - \blacksquare key issues of the engeneering design: CO_2 cooling, track distortions, etc
- IN Now one has to resolve remaining issues towards technology choice for the ILD TPC
 - single hit, momentum and dE/dx resolution with Large Prototype 2 (LP2)
 - ••• optimization of the GEM-like gating device and measurement of ion-stopping power
 - 2-phase CO₂ cooling (micro-cooling circuit option)
 - metigate and correct field distortions
 - me new module design with common pad structure and power-pulsing electronics
 - simulation of the effect of the resistive anode layer for Micromegas
 - minimize the GEM discharge rate and gain uniformity

Pad size limits transverse resolution

- use resistive anode to spread charge
- \blacksquare pad 3x7mm², small $\rm N_{ch}$

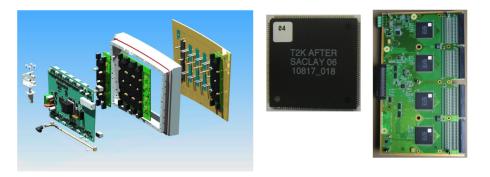


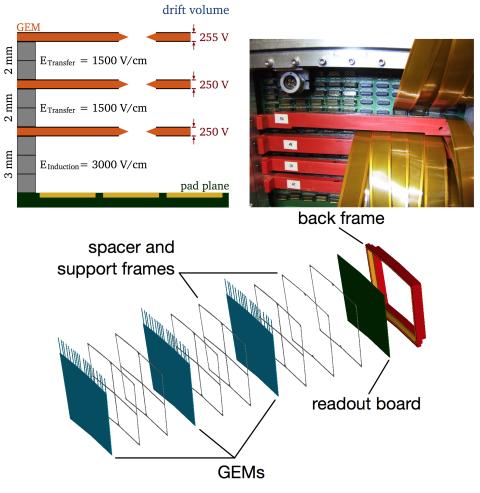
Charge density function of time dependent charge dispersion on 2D continuous RC network:

$$ho(\mathrm{r,t}) = rac{\mathrm{RC}}{\mathrm{2t}} \exp[-rac{-\mathrm{r}^{2}\mathrm{RC}}{4\mathrm{t}}]$$

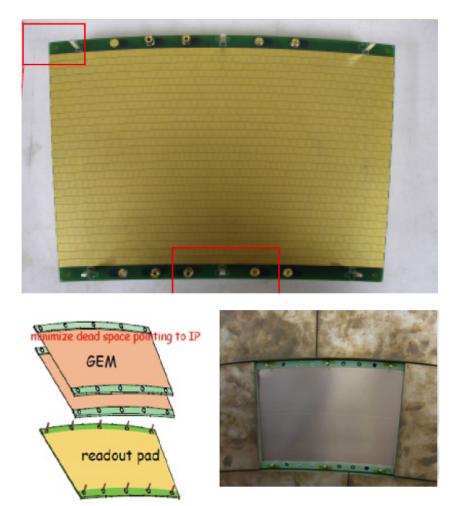
- R- surface resistivity
- C- capacitance/unit area

Relative fraction of charge seen by pads fitted by Pad Response Function (PRF)




Image: MM: T2K readout conceptImage: T2-channel AFTER chip (12-bit)

S.Ganjour

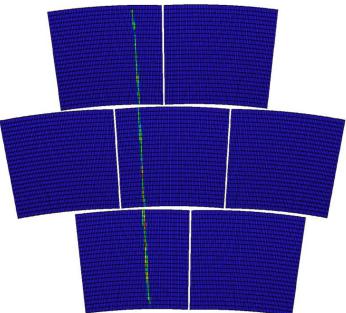


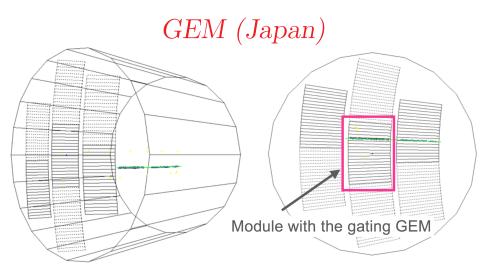
Triple GEM Modules (European GEM)

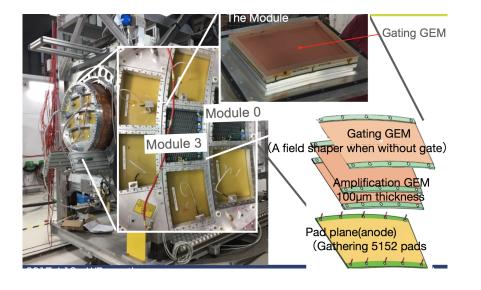
Double GEM Modules (Asian GEM)

IN GEM: modified ALTRO readout

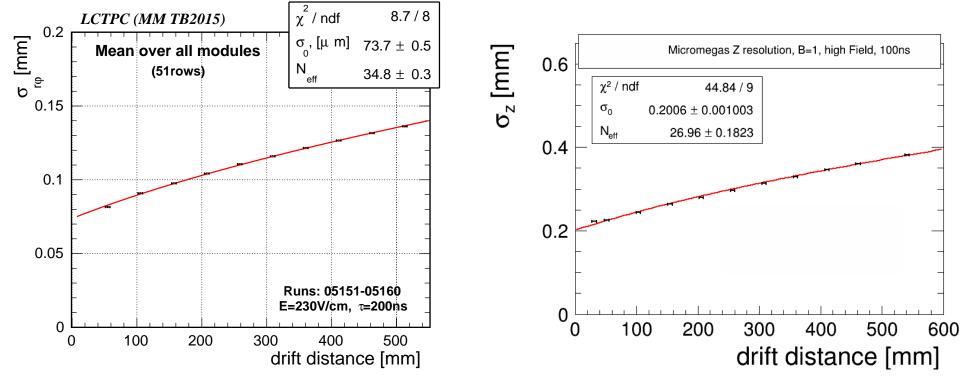
■ 16-channel ALTRO chip (10-bit)


Discharge probability can be mastered (use of resistive coatings, several step amplification, segmentation)

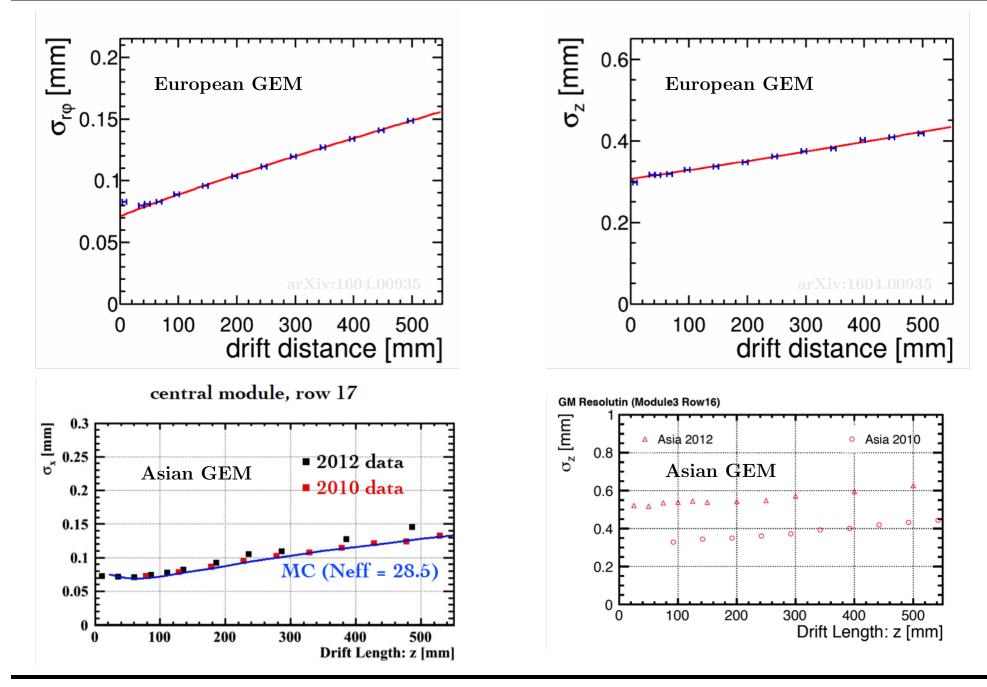

S.Ganjour



MicroMegas (France)

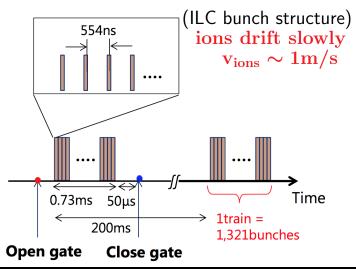


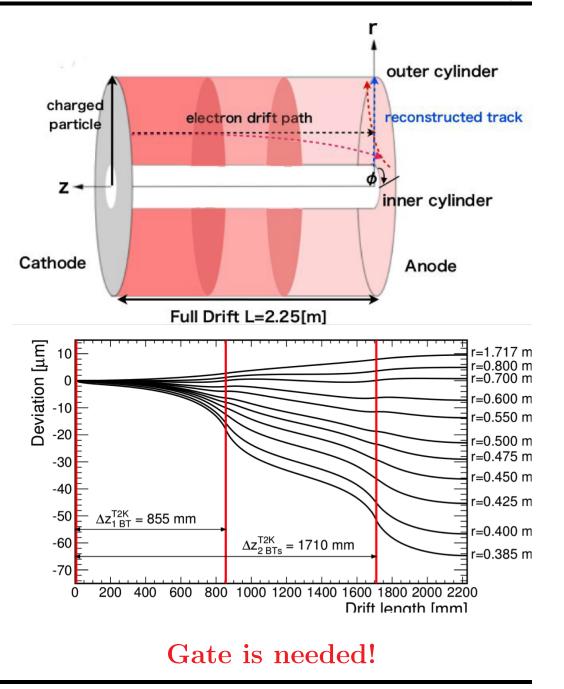
S.Ganjour



IS Endplate fully equipped (all MM modules populated)

- optimized shaping time and mesh voltage
- resistive layer to spread charge
- two type of resistive layers: Carbon-Loaded Kapton (CLK) and Black Diamond (BD)
- \blacksquare full CO_2 cooling system in 2014-15 testbeam

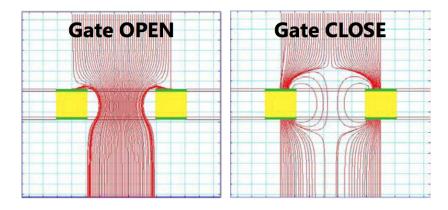

Ion Backflow



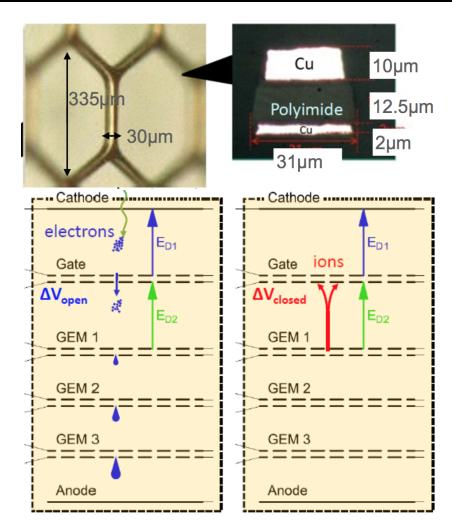
Lea - Saclay

Ion Space Charge can deteriorate the position resolution of TPC

- Primary ions yield distortions in the E-field which result to $O(\leq 1\mu m)$ track distortions
- Secondary ions yield distortions from backflowing ions generated in the gas-amplification region:
 - 60 μm for IBFxGain=3 for the case of 2 ion disks



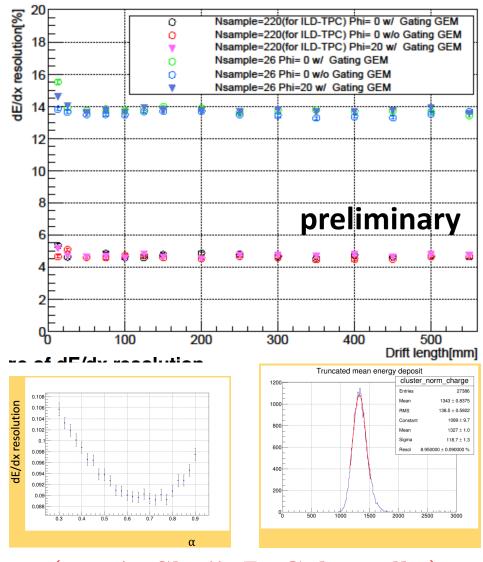
S.Ganjour



- Gating: open GEM to stop ions while keeping transparency for electrons (see Y. Aoki talk)
- Image A large-aperture gate-GEM with honeycomb-shaped holes
 - produced in Japan
 - handed to Saclay for transparency measurements with MM
 - use test setup at CERN

Simulating in hardware an ion disk with a UV lamp making photo-electric effect on the cathode

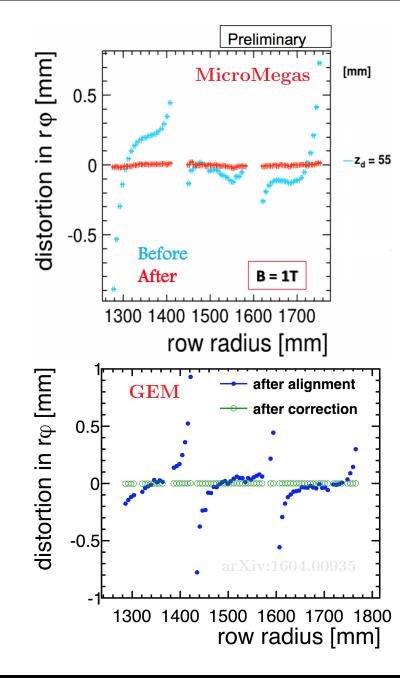
The ions must be stopped before penetrating too much the drift region Measurement of ion-stopping power is needed!


S.Ganjour

Measuring dE/dx resulution with LP test beam data and extrapolating to ILD TPC

- Test arbitrary track lengths by randomly combining hits from several real tracks to a pseudo track in test beam setup
 - allows extrapolating dE/dx resolution to the ILD TPC tracks of 130 cm
- - GEM: σ_{dE/dx} = 4.7% for 220 hits
 → no degradation due to gating GEM
 → good agreement with simulation
 - $\blacksquare \mathsf{MM}: \sigma_{\mathrm{dE/dx}} = 5.0\%$ for 200 hits
 - → no significant degradation due to resistive foil

(see A. Shoji, P. Colas talks)

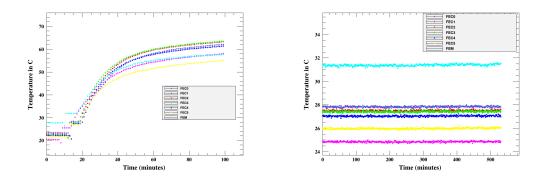


Non-uniform E-field near module boundaries induces ExB effects

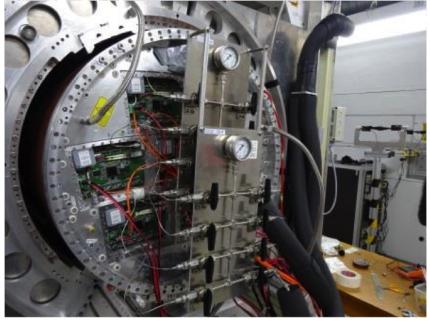
- INF Module frames at ground while the top GEM or Micromesh is at HV
 - $^{\scriptsize \hbox{\tiny IMP}}$ induces distortions of about 0.5 $\rm mm$
 - \rightarrow worth to minimize at design level
 - ightarrow new design should suppress this effect
 - accounted as systematic residual offsets
 - determined on a row-by-row basis
 - ightarrow correct residuals to zero at $m about~20 \mu m$
- $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ Good agreement with simulations
 - E and B field inhomogeneity at module boundaries and near the edges of the magnet

Possible countermeasures: 4 MM modules with new grounding approach will be tested at LP2 this november at DESY

S.Ganjour


Cooling of the electronic circuit is required due to power consumption

 $^{\hbox{\tiny I\!S\!S}}$ Temperature of the circuit rises up to 60°C


- cause a potential damage of electronics
- covect gas to TPC due to a pad heating
- $\label{eq:alphase} \stackrel{\hbox{\tiny ICP}}{\Longrightarrow} \mbox{A 2-Phase } CO_2 \mbox{ cooling with the KEK cool-} \\ \mbox{ing plant } \mathbf{TRACI} \mbox{ was provided to 7 MM} \\ \mbox{modules during } 2014/15 \mbox{ beam tests at DESY} \\ \end{tabular}$

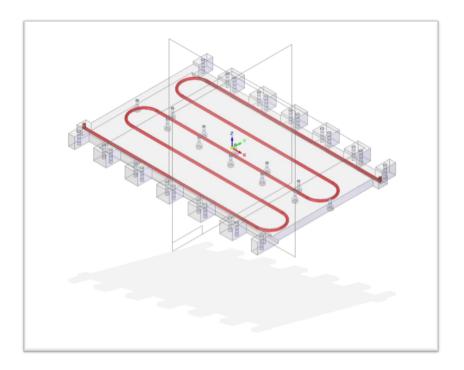
 \blacksquare 10°C at P=45 bar system operation

About $30^{\circ}C$ stable temperature was achieved during operation of 7 MM modules

2-phase CO_2 cooling support

- Thermal behavior and effect of cooling have been simulated
 - D.S. Bhattacharya et al.,
 JINST 10 P08001, 2015"

S.Ganjour



ILD TPC Requirements

- about 1kW heat transfer (half cilinder)
 - \rightarrow power pulsing at room T
- → uniform pad plane temperature
- less material comparing to existing experiments
- IS Saclay project "COSTARD"
 - cooling plate by metallic additive fabrication by laser using sintered powder of Al with a 0.8 mm innerdiameter serpentine
 - → test possibility to remove the powder residuals from the serpentine
 - \rightarrow test pressure up to 100 bar
 - → develop connection to pipes

Development of micro-channel cooling plate in PCB piping with 3D printing technology

Cooperation for industrial contacts for the **micro-cooling circuit** option

\bowtie The beam test electronics are not those to be used in the ILD detector

- ➡ AFTER (T2K chip) is not extrapolable to Switched Capacitor Array (CSA) depths of 1 bunch train
- ALTRO does not satisfy power consumption requirements
- S-Altro 16 has to evolve
 - improve packing factor (probably 65 nm)
 - lower power consumption
 - power pulsing from the beginning

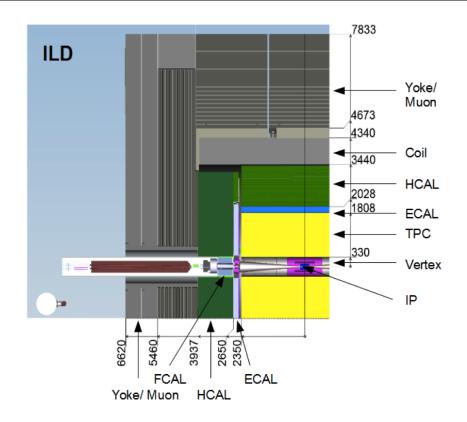
region Common Front End for Gas Detector Signal processor development within AIDA

- the 130 nm work has finished
- ➡ present work within AIDA 2020
- Image Besign of a large GEM and MM modules with cooling and high channel density has been started
 - performance study with the same electronics and pad's structure
 - dedicated power pulsing test

- IN Main issues toward final design were significantly pushed forward with Large Prototype (LP) of the TPC for both technologies
- IS Current efforts could be engaged on the possible consequences of the expected "expression of interest" of the Japanese governement this year, as an input to the European Strategy Update
- \bowtie The R&D work within the LCTPC collaboration is in a phase of engineering toward the technology choice of a TPC for the ILD detector
 - ➡ further beam tests will be carried our with the LP2 upgraded with new end-plate and equipped with additional large area strip telescope
 - it allowed us to identify points requiring common active R&D to be pursued
 - \rightarrow single hit, momentum, dE/dx resolutions with LP2
 - → GEM-like gating device and ion-stopping power
 - → 2-phase CO_2 micro-cooling circuit
 - → engineering aspects, electronics and simulation

☞ Special thanks to P. Colas, K. Fujii A. Sugiyama

Backup



International Linear Collider (ILC) project in Japan:

- starts at 250 GeV as a Higgs factory
- upgradeable to 1 TeV
- ILC is planned with two experiments
- TPC is the central tracker for International Large Detector (ILD)

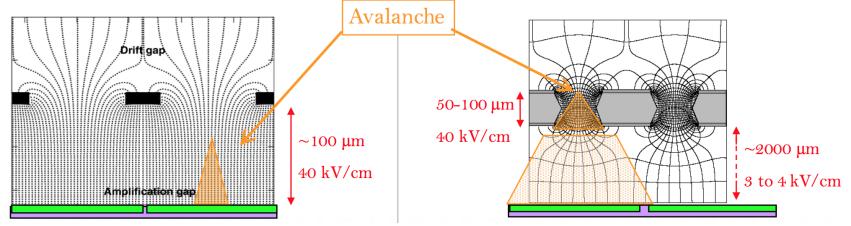
ILD components:

- vertex detector
- few layers of silicon tracker
- **gaseous** TPC
- **ECAL/HCAL/FCAL**
- superconducting coil (3.5 or 4 T)
- muon chambers in iron yoke

ILD requirements:

- momentum resolution: $\delta(1/{
 m p_T}) \leq 2 imes 10^{-5} {
 m GeV^{-1}}$
- \implies impact parameters: $\sigma(\mathbf{r}\phi) \leq 5\mu\mathbf{m}$
- ⇒ jet energy resolution: $\sigma_{\rm E}/{\rm E} \sim 3-4\%$

S.Ganjour



regional Technology choise for TPC readout: Micro Pattern Gas Detector (MPGD)

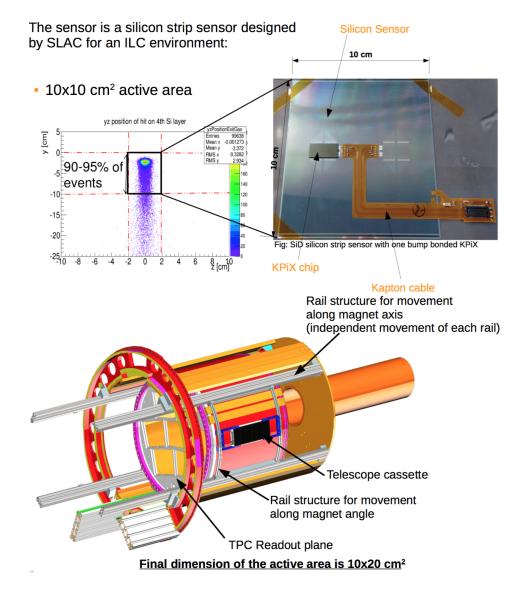
- m no ExB effect, better ageing, low ionback drift
- easy to manufacture, MPGD more robust mechanically than wires
- \mathbb{R} Resistive Micromegas (MM)
 - MICROMEsh GAseous Structure
 - metalic micromesh (pitch ${\sim}50~\mu{
 m m}$)
 - \blacksquare supported by 50 μm pillars
 - multiplication between anode and mesh (high gain)

rs GEM

- Gas Electron Multiplier
- doublesided copper clad Kapton
- multiplication takes place in holes,
- 2-3 layers are needed to obtain high gain

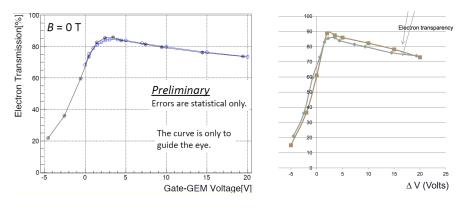
Discharge probability can be mastered (use of resistive coatings, several step amplification, segmentation)

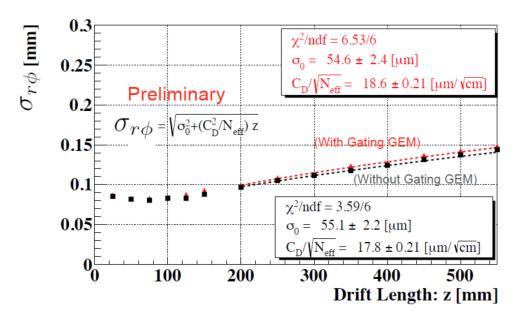
S.Ganjour



Further studies toward the technology choice will be carried out with upgraded LP2

- new mechanical design of endplate: no space between modules
- new large area strip telescope within solenoid with Si sensor: (LYCORIS, see M. Wu talk)
 - → $10x10 \text{ cm}^2$ active area
 - → $320 \ \mu m$ thickness
 - → $0.3\%X_0$ material budget
 - → $25 \ \mu m$ strip pitch to meet momentum resolution
 - → integrated pitch adapter and digital readout (KPiX)


System is under final review before send off to production and funded by EU AIDA2020


Electron transmission rate as a function of GEM voltage measured with Fe⁵⁵

- INST Measurements with GEM (at KEK) and MM (at CERN) are consistent
- Extrapolation to 3.5 T shows acceptable transmission for electrons (80%)
- IS Estimate ion-stopping power based on electron-stopping power measured with a laser beam \Rightarrow better than 10^{-4}

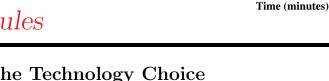
Measurement of ion-stopping power is needed!

A module with a gating GEM has also been tested in beam in November 2016

The results are consistent with no more degradation than expected (10%) GEM gating seems to be a possible solution for the gating at ILC

About 26 W power consumption is currently measured per MM module

 \square Temperature of the circuit rises up to 60° C


- cause a potential damage of electronics
- □ covect gas to TPC due to a pad heating

Cooling of the electronic circuit is required!

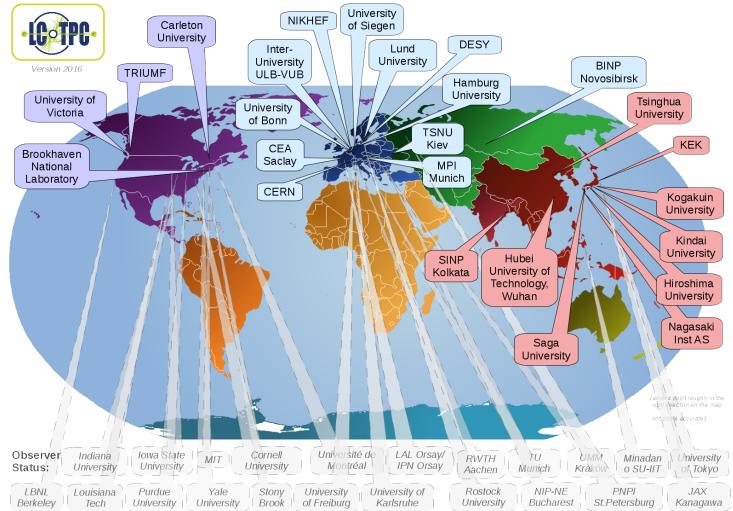
- $\mathbb{Principle:}$ CO₂ has a much lower viscosity and a much larger latent heat than all usual refrigerants
 - **the two phases (liquid and gas) can co**exist at room temperature under pressure
 - wery small pipes suffice
 - hold high pressure with low material
- $rac{10^{\circ}C}$ at P=45 bar system operation

About $30^{\circ}C$ stable temperature was achieved during operation of 7 MM modules

Temperature in C FEC2 Time (minutes) FEC1 FEC2 FEC3 34 FEC4 FEC5 32 U **Femperature** in 30

20

500


Toward the Technology Choice

Module 6 (S3B)

Extensive R&D for ILC TPC is active research area of the LCTPC Collaboration

Total of 12 countries from 25 institutions members + several observer institutes