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lepton g−2

Intrinsic magnetic property of a single lepton particle is characterized
by a dimensionless number, called g -factor.

H = −~µ · ~B, ~µ = g
e

2m
~s

Anomaly, a ≡ (g−2)/2, is a consequence of quantum nature of
elementary particles. R. Kusch and H. M. Foley 1948, J. Schwinger 1948

Electron g−2 is measured by using a Penning trap:
University of Washington: H. Dehmelt et al. (1987)
Harvard University: G. Gabrielse et al. (2006, 2008)

positron g−2 measurement is in preparation.

Muon g−2 is measured by using a muon storage ring:
Old experiments: CERN(1959-1979), BNL(1984-2006)
On-going experiments: J-PARC(2009–),Fermilab(2011–)

Both are the state-of-the-art measurements
in precision physics.
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Electron g−2 measurement
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FIG. 3. Lowest cyclotron and spin levels of an electron in a
Penning trap.

by the unavoidable leading imperfections of a real lab-
oratory trap – a misalignment of the symmetry axis of
the electrostatic quadrupole and the magnetic field, and
quadratic distortions of the electrostatic potential.

The lowest cyclotron energy levels (with quantum
numbers n = 0, 1, . . .) and the spin energy levels (with
quantum numbers ms = ±1/2) (Fig. 3) are given by

E(n, ms) =
g

2
h⌫cms+(n+ 1

2 )h⌫̄c� 1
2h�(n+ 1

2 +ms)
2. (6)

The third term in Eq. 6 is the leading relativistic correc-
tion [28] to the energy levels. Special relativity makes
the transition frequency between two cyclotron levels
|n, msi $ |n + 1, msi decrease from ⌫̄c to ⌫̄c +�⌫̄c, with
the shift

�⌫̄c = ��(n + 1 + ms) (7)

depending upon the spin state and cyclotron state. This
very small shift, with

�/⌫c ⌘ h⌫c/(mc2) ⇡ 10�9, (8)

is nonetheless significant at our precision. However, an
essentially exact treatment of the relativsitic shift is pos-
sible because single quantum transitions are resolved.
The relativistic shift thus contributes no uncertainty to
our measurement. This is a key advantage of the quan-
tum cyclotron over previous measurements systems [4],
in which an unknown distribution of cyclotron states was
excited [29], each with a di↵erent relativistic shift.

To determine g/2, we must rewrite Eq. 5 in terms
of measurable frequencies of an electron bound in the
trap. The needed free-space cyclotron frequency, ⌫c =
eB/(2⇡m), is deduced by use of the Brown-Gabrielse in-
variance theorem [30],

(⌫c)
2 = (⌫̄c)

2 + (⌫̄z)
2 + (⌫̄m)2. (9)

The three measurable eigenfrequencies on the right in-
clude the cyclotron frequency ⌫̄c for the quantum cy-
clotron motion we have been discussing. The second
measurable eigenfrequency is the axial oscillation fre-
quency ⌫̄z for the nearly-harmonic, classical electron mo-
tion along the direction of the magnetic field. The third
measurable eigenfrequency is the magnetron oscillation
frequency for the classical magnetron motion along the

circular orbit for which the electric field for the trap and
the motional magnetic field exactly cancel.

The invariance theorem applies for a perfect Penning
trap, but also in the presence of the mentioned imperfec-
tion shifts of the eigenfrequencies for a real trap. This
theorem, together with the well-defined hierarchy of trap
eigenfrequencies, ⌫̄c � ⌫̄z � ⌫̄m � �, yields an approx-
imate expression that is su�cient at our accuracy. We
thus determine the electron g/2 using

g

2
=

⌫̄c + ⌫̄a

⌫c
' 1 +

⌫̄a � ⌫̄2
z/(2f̄c)

f̄c + 3�/2 + ⌫̄2
z/(2f̄c)

+
�gcav

2
. (10)

The determination requires four inputs. First and sec-
ond are high-precision measurements of the transition
frequencies

f̄c ⌘ ⌫̄c �
3

2
� (11)

⌫̄a ⌘
g

2
⌫c � ⌫̄c (12)

represented by the red and blue arrows in Fig. 6. Third
is a relatively lower precision measurement of the axial
frequency ⌫̄z. Fourth is the cavity shift �gcav/2 that
arises from the interaction of the cyclotron motion and
the trap cavity and is discussed in detail in Sec. V.

III. EXPERIMENTAL REALIZATION

A. Cylindrical Penning Trap

A cylindrical Penning trap (Fig. 4) is the key device
that makes these measurements possible. It was invented
[6] and demonstrated [7] to provide boundary conditions
that produce a controllable and understandable radia-
tion field within the trap cavity. Spontaneous emission
can be significantly inhibited at the same time as cor-
responding shifts of the electron’s oscillation frequencies
are avoided. The latter has not been possible [31] with
the hyperbolic Penning traps of earlier experiments [4],
which have electrodes approximating the equipotentials
of an electrostatic quadrupole.

FIG. 4. Cylindrical Penning trap cavity used to confine a
single electron and inhibit spontaneous emission.

The first function of the trap electrodes is to produce a
very good approximation to an electrostatic quadrupole

Cavity Control of a Single-Electron Quantum Cyclotron:
Measuring the Electron Magnetic Moment

D. Hanneke,⇤ S. Fogwell Hoogerheide, and G. Gabrielse†

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Dated: Submitted to Phys. Rev. A on 3 Sept. 2010)

Measurements with a one-electron quantum cyclotron determine the electron magnetic mo-
ment, given by g/2 = 1.001 159 652 180 73 (28) [0.28 ppt], and the fine structure constant, ↵�1 =
137.035 999 084 (51) [0.37 ppb]. Brief announcements of these measurements [1, 2] are supplemented
here with a more complete description of the one-electron quantum cyclotron and the new measure-
ment methods, a discussion of the cavity control of the radiation field, a summary of the analysis
of the measurements, and a fuller discussion of the uncertainties.

I. INTRODUCTION

A. The Electron Magnetic Moment

Measurements of the electron magnetic moment µ
probe the interaction of the electron with the fluctuat-
ing vacuum, allow the highest accuracy determination of
the fine structure constant, and sensitively test quantum
electrodynamics (QED). For an eigenstate of spin S,

µ = �g

2
µB

S

~/2
, (1)

where g/2 is the magnitude of µ scaled by the Bohr mag-
neton µB = e~/(2m).

For angular momentum arising from orbital motion,
g/2 depends on the relative distribution of charge and
mass and equals 1/2 if they coincide, for example cy-
clotron motion in a magnetic field. For a point particle
in a renormalizable Dirac description, g/2 = 1, and de-
viations from this value probe a particle’s interactions
with the vacuum as well as the nature of the particle it-
self, as with the proton whose g/2 ⇡ 2.8 arises from its
quark–gluon composition.

B. New Measurements of the Electron Moment

Our new measurements, announced in 2006 [1] and
2008 [2], used a one-electron quantum cyclotron [3] to
determine the electron g/2 to a 0.76 ppt and then to a
0.28 ppt accuracy. The latter result,

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt], (2)

has an uncertainty that is 2.7 and 15 times smaller than
the 2006 and 1987 measurements (Fig. 1), the latter being
a measurement that stood for nearly twenty years [4].
The electron g is measured with an uncertainty that is

⇤ Current address: NIST Boulder, CO 80305
† E-mail: gabrielse@physics.harvard.edu
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FIG. 1. Measurements [1, 2, 4] of the dimensionless magnetic
moment of the electron, g/2, which is the electron magnetic
moment in Bohr magnetons.

2300 times smaller than has been achieved for the heavier
muon lepton [5].

The central feature of the new measurements is the
quantum jump spectroscopy of completely resolved cy-
clotron and spin levels of a one-electron quantum cy-
clotron [3]. A number of new methods were introduced
to make this possible.

1. A cylindrical Penning trap cavity that was in-
vented for these experiments [6] imposes boundary
conditions upon the radiation field as well as
providing an electrostatic quadrupole potential
in which a single particle can be suspended and
observed [7].

2. The resulting cavity-inhibited spontaneous emis-
sion, at a rate 10 to 50 times below the radiation
rate in free space, gives the averaging time re-
quired to resolve one-quantum transitions that
are made when all detection systems are turned o↵.

3. Stored electron plasmas [8–10] and the damping of
a single electron in this cavity [2] are used together
to determine cavity frequency shifts and eliminate
cavity shifts as a major uncertainty [2].

4. Blackbody photons that would cause unwanted
quantum jumps are eliminated by lowering the
cavity temperature to 100 mK with a dilution
refrigerator [3].

5. Quantum nondemolition measurements of the
cyclotron and spin energy level are realized using
a one-particle self-excited oscillator [11].
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D. Hanneke, S. Fogwell Hoogerheide, G. Gabrielse, PRL100(2008)120801;PRA83(2010)052122

Harvard 2008 measurement

ae ≡ (ge − 2)/2 = (1 159 652 180.73± 0.28)× 10−12 [0.24ppb]

Theory needs QED up to 5 loop + hadronic O(10−12) + weak O(10−14):

(α/π)5 ∼ 0.068× 10−12, α ≡ e2/(4πε0~c) = 1/137.03 · · · ,
where α is the fine-structure constant.
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Muon g−2 at BNL
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aµ ≡ (gµ − 2)/2 = (116 592 089± 63)× 10−11 [0.5ppm]

Theory needs QED up to 5 loop + hadronic O(10−7) + weak O(10−9):

(α/π)5π2 ln2(mµ/me) ∼ 1.9× 10−11

because of enhancement due to the electron loop, me � mµ.

Makiko Nio (RIKEN) QED corrections to g−2 ALCW2018 4 / 28



New Muon g−2 experiments
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Figure 5: A comparison of recent and previous evaluations of aSM
µ . The analyses listed in chronological order are:

DHMZ10 [21], JS11 [22], HLMNT11 [18], FJ17 [23] and DHMZ17 [24]. The prediction from this work is listed as
KNT18 [6], which defines the uncertainty band that other analyses are compared to. The current uncertainty on the
experimental measurement [1, 2] is given by the light blue band. The light grey band represents the hypothetical
situation of the new experimental measurement at Fermilab yielding the same mean value for aexp

µ as the BNL
measurement, but achieving the projected four-fold improvement in its uncertainty [3].

where the uncertainties include all available correlations and local �2
min/d.o.f. inflation. Using the same data compila-

tion as for the calculation of ahad, LO VP
µ , the next-to-leading order (NLO) contribution to ahad,VP

µ is determined here

to be ahad,NLOVP
µ = (�9.82 ± 0.04)⇥ 10�10 . The corresponding result for �↵

(5)
had(M2

Z) is [6]

�↵
(5)
had(M2

Z) = (276.11 ± 0.26stat ± 0.68sys ± 0.14vp ± 0.82fsr)⇥ 10�4 = (276.11 ± 1.11tot)⇥ 10�4 , (3)

where the superscript (5) indicates the contributions from all quark flavours except the top quark. The fractional

contributions to the total mean value and uncertainty of both ahad, LO VP
µ and �↵

(5)
had(M2

Z) from various energy intervals

is shown in Figure 3. Figure 4 shows the contributions from all hadronic final states to the hadronic R ratio and its

uncertainty below 1.937 GeV.

3.2 SM prediction of g � 2 of the muon and ↵(M2
Z)

Combining the results for ahad, LO VP
µ and ahad, NLO VP

µ with the contributions from QED: aQED
µ = (11 658 471.8971 ±

0.007)⇥ 10�10 [25], the electro-weak sector: aEW
µ = (15.36 ± 0.10)⇥ 10�10 [26], the hadronic vacuum polarisation at

NNLO: ahad, NNLO VP
µ = (1.24±0.01)⇥10�10 [27], the hadronic light-by-light (LbL) at LO: ahad, LbL

µ = (9.8±2.6)⇥10�10

[28] and the hadronic LbL at NLO: ahad, NLO LbL
µ = (0.3±0.2)⇥10�10 [29], the SM prediction of the anomalous magnetic

moment of the muon is found to be

aSM
µ = (11 659 182.05 ± 3.56)⇥ 10�10 . (4)

Comparing this with the current experimental measurement results in a deviation of �aµ = (27.05 ± 7.26) ⇥ 10�10,

corresponding to a 3.7� discrepancy. This result is compared with other determinations of aSM
µ in Figure 5. The total

value of the QED coupling at the Z boson mass is found in this work to be

↵�1(M2
Z) =

⇣
1��↵lep(M2

Z)��↵
(5)
had(M2

Z)��↵top(M2
Z)

⌘
↵�1 = 128.946 ± 0.015 . (5)

4 Conclusions

This analysis, KNT18 [6], has completed a full re-evaluation of the hadronic vacuum polarisation contributions to

the anomalous magnetic moment of the muon, ahad, VP
µ and the hadronic contribution to the e↵ective QED coupling

A. Keshavarzi, D. Nomura, and T. Teubner, arXiv:1802.02995

Fermilab J-PARC

Precision will be reduced from 0.5 ppm to 0.1 ppm.

Makiko Nio (RIKEN) QED corrections to g−2 ALCW2018 5 / 28



theory of lepton g−2

The Standard Model contribution to the lepton g−2:

al = al(QED)︸ ︷︷ ︸
γ, e, µ, τ

+ al(weak)︸ ︷︷ ︸
W±, Z0

+al(hadron)

The QED contribution depending on lepton masses involved.
For the electron g−2, the dimensionless ae is divided into

ae(QED) = A1︸︷︷︸
γ, e

+A2(me/mµ)︸ ︷︷ ︸
γ, e, µ

+A2(me/mτ )︸ ︷︷ ︸
γ, e, τ

+A3(me/mµ,me/mτ )︸ ︷︷ ︸
γ, e, µ, τ

.

A1 is the same for any lepton, mass-independent and universal.
Perturbation expansion of QED:

Ai =
(α
π

)
A

(2)
i +

(α
π

)2
A

(4)
i +

(α
π

)3
A

(6)
i +

(α
π

)4
A

(8)
i +

(α
π

)5
A

(10)
i + · · ·

The 10th-order mass-independent A
(10)
1 is hardest to evaluate.

Here after, we discuss the electron g−2(ae) only.
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QED electron g−2

One electron scattering by an external photon:

eū(p + q/2)

[
γµF1(q2) +

i

2m
σµνqνF2(q2)

]
u(p − q/2)Aµ(q)

ae ≡ F2(q2 = 0), F1(q2 = 0) = 1

(a) (b) (c) (d) (e)
The muon and tau-lepton contribute to ae very little:

ae(QED:mass-dependent) = 2.747 5719 (13)× 10−12

from 4th, 6th, 8th and 10th-order graphs involving fermion loops.
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QED mass-independent term

Focus on the mass-independent A1:
n loops # of F diagrams w/ fermion loops w/o fermion loops

1 1 0 1
2 7 1 6
3 72 22 50
4 891 373 518
5 12,672 6,318 6,354

n loops A
(2n)
1 who & when

1 A
(2)
1 = 0.5 Schwinger 1948

2 A
(4)
1 = −0.328 478 965 · · · Petermann 1957, Sommerfield 1958

3 A
(6)
1 = 1.181 241 456 · · · Laporta and Remiddi 1996

4 A
(8)
1 = −1.912 245 764 · · · Laporta 2017

5 A
(10)
1 = 6.675 (192) Aoyama et al. (AHKN) 2018
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QED 8th-order A
(8)
1

891 Feynman vertex diagrams: S. Laporta, PLB772(2017)232

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(10) (11) (12) (13) (14) (15) (16) (17) (18)

(19) (20) (21) (22) (23) (24) (25)

Figure 2: Examples of vertex diagrams belonging to the 25 gauge-invariant sets. The number in-
dicates the gauge-invariant set to which the diagram belongs. In the case of the sets 1-16, 24,25,
the other diagrams of each set can be obtained by permuting separately the vertices on the left
and right side of the main electron line, and considering also the mirror images of the diagrams; in
the sets containing diagrams with vacuum polarization insertions, one must also move the vacuum
polarization insertion to each internal photon line. In the sets containing light-light diagrams, one
must also consider the permutations of the vertices of the electron loop.

iii

History of A
(8)
1 :

year who A
(8)
1 comment

2017 Laporta −1.912245764 · · · almost analytic, 1100 digits
2015 AHKN −1.91298 (84) latest numerical
2008 AHKN −1.9144 (35) two integrals revised
2005 KN −1.7283 (35) light-by-light revised
1990 Kinoshita −1.43 (14) improved
1981 K & Lindquist −0.8 (2.5) 1st result
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More on 8th-order terms

More on the mass-independent term A
(8)
1 : P. Marquard,et al.

1) Alternative analytic result: A
(8)
1 = −1.87 (12) arXiv:1708.07138

Consistent with Laporta’s −1.912 and AHKN’s −1.913.
2) Alternative numerical work on the contribution from 518 diagrams

w/o fermion loops:
Laporta −2.176 866 02 · · · S. Laporta, PLB772(2017)232

AHKN −2.177 33(82) AKHN, PRD91(2015)033006

Volkov −2.34 (17) S. Volkov, PRD96(2017)096018

Mass-dependent terms A
(8)
2 and A

(8)
3 :

1) Numerical calculation: AKHN, PRL109(2012)111807

Change the loop fermion mass from me to mµ(mτ ). Easy.
2) Analytic calculation: A. Kurz et al. PRD93(2016)053017, NPB879(2014)1

An additional small expansion parameter me/mµ (mτ )� 1.
Difficult but easier than the mass-independent term A1.

Don’t worry about the 8th order any more. It’s CORRECT.
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QED 10th-order vertex diagrams

I(a) I(b) I(c) I(d) I(e)

I(f) I(g) I(h) I(i) I(j)

II(a) II(b) II(c) II(d) II(e)

II(f) III(a) III(b) III(c) IV

V VI(a) VI(b) VI(c) VI(d) VI(e)

VI(f) VI(g) VI(h) VI(i) VI(j) VI(k)

12,672 Feynman vertex diagrams divided into 32 subsets:
· 6,354 vertex diagrams w/o a fermion loop, Set V. difficult
· 6,318 diagrams w/ closed fermion loops, Set I-IV, IV. easier
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10th-order Set V

The hardest diagrams to evaluate belong to Set V.
Ward-Takahashi concatenation:

6354/9 = 706→ 389, because of time-reversal symmetry.
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Numerical approach to QED Feynman diagrams

Uniqueness of Kinoshita’s approach to QED g−2:

Ward-Takahashi sum of vertex diagrams

Feynman parameter space
Momentum space, 20 dim. v.s. Feynman parameter space, 13 dim.

9876

e

54

d

32

c

1

b

a

· Λν(p, q) ... sum of 9 vertex diagrams
· Σ(p) ........ a self-energy diagram
· q.............. momentum of an external photon

· p ± q/2 ... momenta of external on-shell electrons

Λν(p, q) ≈ qµ

[
∂Λµ(p, q)

∂qν

]

q=0

− ∂Σ(p)

∂pν

The r.h.s. is to be calculated instead of the l.h.s.

Makiko Nio (RIKEN) QED corrections to g−2 ALCW2018 13 / 28



Feynman parametric amplitude

Loop momenta are exactly and analytically integrated out.
The bare amplitude of a n-loop self-energy like diagram G is

M
(2n)
G =

(−1

4

)n

(n − 1)!

∫
(dz)G

[
1

n − 1

(
E0 + C0

U2V n−1
+

E1 + C1

U3V n−2
+ · · ·+ En−2 + Cn−2

UnV

)

+

(
N0 + Z0

U2V n
+

N1 + Z1

U3V n−1
+ · · ·+ Nn−1 + Zn−1

Un+1V

)]
.

Ei and Ci are from ∂Λ/∂q. Ni and Zi are from ∂Σ/∂p.
All are expressed by the building blocks:
· zi ... Feynman parameter of line i .
· Bij ... ”correlation function” of lines i and line j ,

determined by and only by the topology of a graph.
· Ai ... scalar current of the external momentum p on line i .
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UV and IR counter terms: 4th-order example

Divergence structure of the WT-sum is same as that of the self-energy
diagram.

M4b
1 2 3

a

b

M4a
1 2 3

a b

On-shell renormalization:

a4a ≡ M4a − 2L2M2, a4b ≡ M4b − dm2M2∗ − B2M2

UV in M4a, M4b, L2, dm2, B2 and IR in M4b, L2, B2.
Both a4a and a4b are IR divergent, but the sum a4a + a4b is finite.
Thanks the Kinoshita-Lee-Nauenberg IR cancellation theorem.

Express the finite contribution in terms of the finite quantities:

a4a + a4b = ∆M4a + ∆M4b −∆LB2

∆M4a ≡ M4a − 2LUV
2 M2, L2 = LUV

2 + LR2 ,

∆M4b ≡ M4b − dmUV
2 M2∗ − BUV

2 M2 − LR2 M2 − dmR
2 M2∗

B2 = BUV
2 + BR

2 , dm2 = dmUV
2 + dmR

2 , ∆LB2 = LR2 + BR
2
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Contribution from the 10th order Set V

Do the same separation for 389 Set V self-energy-like diagrams.
The integrands of ∆MX001–∆MX389 are automatically generated.
The residual finite renormalization term is obtained as

A
(10)
1 [Set V] = ∆M10 + ∆M8 (−7∆LB2) + ∆M6 {−5∆LB4 + 20(∆LB2)2}

+ ∆M4 {−3∆LB6 + 24∆LB4 ∆LB2 − 28(∆LB2)3}
+ ∆M4 (2∆dm4 ∆L2∗)

+ M2 {−∆LB8 + 8∆LB6 ∆LB2 − 28∆LB4 (∆LB2)2 + 4(∆LB4)2 + 14(∆LB2)4}
+ M2 ∆dm6 (2∆L2∗)

+ M2 ∆dm4 (−16∆LB2 ∆L2∗ − 2∆dm2∗ ∆L2∗ + ∆L4∗),

where

∆M10 =
X389∑
G=X001

∆MG .

Each ∆MG is to be numerically evaluated.
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Automatic code generation for Set V

HOKUSAI-BigWaterfall 2017-, 2.5 Pflops 
HOKUSAI-GreatWave 2015-,  1 Pflops 
RICC 2009-2017,  96Tflops 
RSCC 2004-2009, 12Tflops             RIKEN  Wako	

X253
1 2 3 4 5 6 7 8 9

a
b

c
d e

X253 represents 18 vertex diagrams 
6354 vertex diagrams à 389 integrals 
	

Diagram information 
X253: “abccdedeba”	

Fortran Programs 
      ΔM（X25３）	GencodeN	

automation	

1.  Amplitude								M(X253)	
2.			UV	subtrac?on	terms			
										M(X253)R	=	M(X253)ー(23	UV	terms)	
3.			IR	subtrac?on	terms	
									ΔM(X253)=M(X253)Rー(91	IR	terms)	

When they are numerically integrated by VEAGS,  
quadruple precision of real numbers is used.	

About 72,000 lines	
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New computers HOKUSAI GW & BW
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1 PFLOPS Fujitsu PRIMEHPC FX100 
(34560　cores) 
April 2015- 
Cutting edge supercomputer 
Compatibility with the K computer 
Availability for highly parallelized programs  	

2.58 PFLOPS IA Cluster of Xeon Gold 6148 (33600cores) 
October 2017- 
Raising HPC environment of RIKEN 
Popular architecture 
High versatility  

下野黒髪山きりふりの滝 神奈川沖浪裏 



A typical numerical integral of Set V

Example: X024

9876

e

54

d

32

c

1

b

a

14 (# of lines) - 1 - 2 (# of s.e. diag.) = 11 dimensional integral.

31 UV and 44 IR counter terms.

the integrand consists of 86,850 FORTRAN lines,
occupying 24.4 MB as an executable.

it takes 20 hours to evaluate 4× 109 sampling points
using double-double precision
with 25 node (1,000 core) Intel Xeon machine (HOKUSAI-BigWaterfall).
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Cross-check for integrals of Set V

Reshuffle integration variables of the 389 integrals.
2017 calculation is therefore independent from 2015 calculation.
An error was found in X024 and its value was revised.
No error has been found in other 388 integrals.
Numerical results with different mappings are in good agreement.

Integrals showing relatively large discrepancies:

integral 2017 result 2015 result difference
X100 −15.232(17) −15.292(33) 0.060
X141 −12.496(17) −12.557(35) 0.060
X113 −4.443(17) −4.385(32) −0.058
X325 11.539(17) 11.596(34) −0.056
X146 −2.246(17) −2.299(34) 0.053
X236 2.107(21) 2.056(18) 0.051
X153 14.845(17) 14.894(34) −0.048
X251 −1.343(20) −1.391(08) 0.047
X044 4.365(16) 4.412(28) −0.047
X144 23.677(17) 23.724(37) −0.047
X252 −10.865(17) −10.909(34) 0.044
X256 −13.996(17) −14.041(34) 0.044
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New value of A
(10)
1

New and massive evaluation of Set V leads to

the mass-independent 10th-order A
(10)
1

A
(10)
1 = 6.675 (192)←− 7.795 (336)

AKN,PRD97(2018)036001[arXiv:1712.06060]

The shift −1.120 comes from

X024 revision −1.257.

statistics improvement +0.137
within the statistical uncertainty.

Numerical calculation was conducted on computers at RIKEN:

RICC(Intel Xeon, 2009–2017), HOKUSAI-GreatWaves(Fujitsu FX100, 2015–), and

HOKUSAI-BigWaterfall(Intel Xeon, 2017–).
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The fine-structure constant α(Rb)

Need the fine-structure constant α from outside QED.
The Rb atom measurement provides

CODATA2014,RMP88(2016)035009[arXiv:1507.07956]

α−1(Rb : 16) = 137.035 998 995 (85)

α−1(Rb : 10) = 137.035 999 049 (90)

α(Rb) =

[
2R∞
c
× Ar (Rb)

Ar (e)
× h

m(Rb)

]1/2

· R∞ ... Rydberg constant from the H-atom spectroscopy and QED.
· Ar (Rb),Ar (e) are the relative atomic masses of the Rb atom and the electron.

Both are determined by measuring frequency in a Penning trap.

· h/m(Rb) is measured by using interference of matter wave.

The uncertainty is dominated by the last one h/m(Rb).
The shift −0.000 000 054 and improvement from (90) to (85) come from
the first two terms.
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Electron g−2, theory v.s. experiment

With the fine-structure constant α(Rb),

the SM prediction of electron g − 2

ae(theory : 17) = 1 159 652 182.032 (00)(13)(12)(720)× 10−12

ae(theory : 15) = 1 159 652 181.643 (25)(23)(16)(763)× 10−12

Uncertainties are due to QED 8th, QED 10th, hadron, and α(Rb).

Hadronic effects are given in F. Jegerlehner, arXiv:1705.00263.
The shift +0.39× 10−12 = (+0.02− 0.07− 0.01 + 0.45)× 10−12.

QED 8th, QED 10th, hadron, and α(Rb)

the Harvard measurement of electron g-2

ae(HV : 08) = 1 159 652 180.72 (28)× 10−12

D. Hanneke, S. Fogwell, and G. Gabrielse, PRL100(2008)120801 [arXiv:1801.1134]

Difference between measurement and theory:
ae(HV : 08)− ae(theory : 17) = (−1.31± 0.77)× 10−12.
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the fine-structure constant α(ae)

Solve α(ae) from ae(HV : 08) = ae(theory):

α from ae
α−1(ae : 17) = 137.035 999 1491 (00)(15)(13)(330)

α−1(ae : 15) = 137.035 999 1570 (29)(27)(18)(330)

Uncertainties are due to QED 8th, QED 10th, hadron, and measurement.

The shift comes from A
(10)
1 and then A

(8)
1 .

Difference between two determinations of α:

α−1(ae : 17)− α−1(Rb : 16) = (0.155± 0.091)× 10−6
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CODATA2017 and the Planck constant

α(ae) and α(Rb) are used to determine exact values of some fundamental
constants.
In the new SI, the Planck constant h, the elementary charge e, the
Boltzmann constant k, and the Avogadro number NA become defined
numbers like the speed of light c :

h = 6.626 070 15× 10−34 Js,

e = 1.602 176 634× 10−19 C,

k = 1.380 649× 10−23 JK−1,

NA = 6.022 140 76× 1023 mol−1.

Definition of kilogram is based on the Planck constant h after the new SI
launches in Fall of 2018.
Good bye, the International Prototype Kilogram after 2018.

P. J. Mohr, D. B. Newell, B. N. Taylor and E. Tiesinga, Metrologia 55(2018)125
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Summary

QED g−2 up to the 8th-order contribution has been firmly
established.

QED g−2 of the 10th order has been extensively checked.

QED g−2 is ready for the on-going new experiments of
electron-positron g−2 and of muon g−2.

QED g−2 was served for the new SI. After the new SI launches, the
fine-structure constant α is the unique source of uncertainties of
other fundamental physical constants.

QED g−2 shows that we are able to compute many and complex
Feynman diagrams using analytic/numerical methods with help of
powerful computers.
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backup
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QED contributions to muon g − 2

Changes made so far:

exact result for the mass-independent 8th-order A
(8)
1 .

revised result for the mass-independent 10th-order A
(10)
1 .

values of the fine-structure constant α(Rb) and α(ae).

Dominant contributions w/ electron loops A
(8)
2 (mµ/me) has NOT been

modified.

QED contributions to muon g−2

aµ(QED : α(ae)) = 1 165 847 188.41 (7)(17)(6)(28)[34]× 10−12

aµ(QED : α(Rb)) = 1 165 847 189.71 (7)(17)(6)(72)[75]× 10−12

Uncertainties are due to lepton-mass ratios, QED 8th, QED 10th, α and combined.

Further numerical improvement on QED 8th and 10th is possible.
Targets are diagrams involving a light-by-light scattering subdiagram.
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