The LumiCal for luminosity measurement at the CEPC

Suen Hou Academia Sinica

for the CEPC LumiCal group

2018.05.28 14:25 409

LumiCal in MDI region at CEPC

Concept Design:

Mounted in front of Quadruple, front $z \sim \pm 1$ m studies are conducted for

- Beam crossing 33 mRad
- Electron shower leakage in to TPC volume (z to \pm 2 m)

Luminosity measurement

- Z lineshape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ is dominant, $\sigma = 41$ nb
- Luminosity is best provided by detecting Bhabha, $e^+e^- \rightarrow e^+e^-$, elastics scattering

$$E(e^{\pm}) \sim E_{beam}$$
, Back-to-Back

$$\sigma = \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2} \right)$$

$$\Delta\theta \equiv \theta_{\text{RIGHT}} - \theta_{\text{LEFT}}$$

 Z,γ

 Z,γ

LumiCal vs LEP/ILD

	CEPC	OPAL	ILD
z to IP (m)	.95 ~ 1.11 m	2.5 m	2.5 m
radius (mm)	28 .5 ~ 100 mm	62 - 142 mm	80 – 195 mm
θ range	28.5 ~ 100 mRad	25 - 57 mRad	40 - 69 mRad
Si r-pitch		2.5 mm	1.8 mm
radius precision	Scale by z coor. to OPAL/ILD	4.4 µm	
Ref.		arXiv-0206074v1 EPJC 14 373	Procedia 37 258

LumiCal precision

Luminosity is by counting Bhabha events

In a fiducial θ region

$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}}$$

$$\mathcal{L} = rac{1}{arepsilon} rac{N_{
m acc}}{\sigma^{
m vis}} \quad \sigma = rac{16\pilpha^2}{s} \left(rac{1}{ heta_{min}^2} - rac{1}{ heta_{max}^2}
ight)$$

Dominant systematic error

$$\delta L/L \sim 2 \delta \vartheta/\vartheta_{min}$$

For a precision of $\delta L/L < 10^{-3}$

LumiCal at $\mathbf{z} = \pm \mathbf{1} \mathbf{m}$, $\theta_{\min} = 30 \text{ mRad}$

$$\rightarrow \delta \vartheta = 15 \,\mu Rad$$
 or $dr = 15 \,\mu m$

Error due to offset on Z

$$\rightarrow$$
 0.1 mm on z or $dr = \delta Rx\vartheta = 3 \mu m$

offset on the **mean**

of spatial resolution = offset on θ_{min}

→ dominant **LUMINOSITY error**

Event fraction by missing 10 μRad in +x (boosted) side

- 0.1 mm offset on $Z \rightarrow \Delta Rx\theta = 3 \mu m$ (R=1 m, θ =30 mRad in LumiCal fiducial) 1 μ m in radius at Z = 1m \rightarrow 1 μ Rad
- Assume LumiCal fiducial region is 30 60 mRad
 Count event offset by 10 μm (10 μRad)
- \rightarrow Luminosity uncertainly $\delta L = 0.08\%$

BHlumi generated events in 14~200 mRad

Shifting acceptance 30 mRad to 30.01 mRad → ratio = .08 %

Boost by CEPC beam crossing angle

- **BHlumi** simulation, most are LO, $E(e^+)=E(e^-)=E_{beam.}$, OpenAng = π
- CMS(e⁺e⁻) boosted by beam crossing
- e[±] boosted ~16.5 mRad off ring-center lost into beam-pipe

Boosted Bhabha

BHLUMI colliding e+ e- are back to back
Boost CEPC crossing angle of 33 mRad
Boost Bhlumi e+, e- to CEPC → *E is larger by* ~.01%

Ebeam = 50 GeV → boosted E = 50.0068 GeV

- Boosted LO Bhabha, (e+e-, no γ)
- e^+ , e^- detected in **fiducial** acceptance of r > 20 mm
- r-φ plotted in bands (every 45 deg in φ)
- event loss 163 nb → 98 nb
- **→** loss is SIGNIFICANT
- → LumiCal wants a small inner r, in OVAL shape if feasible

LumiCal detector options

Luminosity precision = e^{\pm} detection in r, at inner radius of fiducial

- → Silicon strip is the choice!
- → Alignment CAN NOT reach 1 μm
- → wide strip (~2mm) CAN NOT reach 10 μm resolution
- → A stand-alone LumiCal CAN NOT calibrate its offsets to IP

OPAL Si-W sandwich

LumiCal with a simple tracking ring

error on mean is much smaller, CAN reach 1 μ m, $\delta L/L \sim 0.01 \%$

10

Si strips resolution

– Silicon strip of p-n on ~300 μm wafer ionization e-h ~ 25k pairs in ~20 μm cone

Readout pitch 50 μm → ~5 μm resolution strip ~10 um, a floating p-implant

Charge sharing of a MIP to neighboring strips

$$\eta = \frac{Q_r}{Q_r + Q_l},$$

\rightarrow A flat η gives better resolution

Resolution ~ 5µm

Spatial resolution of wide Si pads

• Study using CMS preshower prototype 380 μm thick, 1810 μm pitch, 160μm gap

 A test beam at CERN mixed e⁻, π⁻, 1-12 GeV

Ionization charge of hits on wide Si pads

- Linear fit to Telescope track to predict hit position on pads
- MIP charge is collected mostly in one trip

A hit in gap between two Si strips Ionization charge in a narrow (~20µm cone) Drift mostly to the nearest strip

Ham-VAhdr <u>ට</u> (1000-Ham-VA1 150-100-500-0.25 0.5 0.75 0.25 0.5 0.75 400-Events 300 Ham-VA1 Ham-VAhdr 200 100 0.25 0.5 0.75 0.25 0.5 0.75 0

Ionization charge of MIP hits on Si strip versus ref. position

Spatial resolution of wide Si pads

- Gap structure compared gaps of 50, 160 µm, with an intermediate strip of 0, 6, 16 µm
- ¬ η distributions of diff. widths, inter-strip structure are compatible

$$\eta = \frac{Q_r}{Q_r + Q_l}$$

Spatial resolution using wide Si pads

- Select hits in a fiducial at the gap of two strips n-1, n
- Width here is the resolution

Gap width is 160 µm

Posclution = 30 µm

→ Resolution ~ 30 µm

Events in gap Charge sum are compatible

→ 100% detection efficiency

LumiCal as a Si-W

Detector assembly:

first layer: high resolution tracking for electron hit r, φ position

energy resolution: Si-wafer detector charged particles only

each is a MIP of Landau ionization charge

EM shower = # of charged particles.

e[±], γ Identification:

photon has no signal on Si-wafer

photon fragmentation after ~1 X₀

photon ID: EM shower with no 1st layer hits

photon spatial resolution: Calo segmentation

LumiCal lateral shower distribution

Lateral shower distribution behind a

 $1.4 X_0 Al$ absorber

Data vs MC (histogram)

LumiCal shower leakage

GEANT3 of a lateral shower testbeam*

agree on charged multiplicity, lateral dist.

Si-W sandwich

better shower description, and compactness

W $1X_0(3.5 \text{mm}) + 1 \text{mm Air gap} \rightarrow \text{Moliere Radius} = 12 \text{mm}$

- Mockup of a $cos\theta = .992$ cone

detecting leakage to TPC

- Mininum e/γ cuts .01 MeV

LumiCal simulation

• TPC cone: θ =126.6 mRad ($\cos\theta$ =.992) Fe 0.5 cm

scintillators on surfaces detecting charged hits

● **DQ0 support**: Fe=100 cm tube, behind LumiCal

TUBE SiW: 20 decks of tubes

W: 0.35 cm $(1X_0)$, r = 2.5 - 10 cm

Airgap: 0.2 cm

Si: 0.03 cm thick, r = 2.5 - 10 cm

CONE SiW: 20 decks of cones

W: 0.35 cm $(1X_0)$, front r = 2.5 - 10 cm @z = 100 cm

Airgap: 0.2 cm outer edge radially to IP, θ =.997

Si: 0.03 cm thick, front r = 2.5 - 10 cm

"TUBE" LumiCal shower leak distribution

50 GeV electron shower, reaching the outer Fe cone (5mm) at θ =.992

"CONE" LumiCal shower leak distribution

50 GeV electron shower, particles off Calo to outer cone at θ =.992

50GeV electron shower leak vs theta

Simulate 50 GeV electron from IP at fixed theta Shower leakage are mostly low energy < 100 MeV particles

50 GeV electron average events enter/pass 5 mm Fe cone at 0.992 Rad			
electron θ (mRad)	TUBE LumiCal N(enter) /N(pass)	CONE LumiCal N(enter) /N(pass)	
40	15.4 / 5.6	13.6 / 5.8	
90	392 / 155	173 / 76	
95	501 / 290	367 / 152	
98	762 / 216	860 / 284	
99	553 / 140	1331 / 367	

125GeV electron shower leak vs theta

Simulate 125 GeV electron from IP at fixed theta Shower leakage are mostly low energy < 100 MeV particles

125 GeV electron average events enter/pass 5 mm Fe cone at 0.992 Rad			
electron θ (mRad)	TUBE LumiCal N(enter) /N(pass)	CONE LumiCal N(enter) /N(pass)	
40	38.0 / 16.0	35.8 / 14.7	
90	1028 / 399	434 / 197	
95	2389 / 720	937 / 382	
98	1718 / 473	2176 / 725	
99	1102 / 273	3306 / 915	

Summary

- Luminosity of Bhabha counting is demanded to δL/L ~ 0.1% with Si Strip to reach r_{inner} to resolution <10 μm
 A "floating LumiCal" has unknown systematics on r_{inner}
 By adding electron tracking to calibrate "mean of r_{inner}" to 1 μm → to reach δL/L ~ 0.01%
- Beam crossing boosts electrons and
 → loss of event requiring both e+, e⁻ detected by LumiCal
 → smaller r_{inner} of LumiCal is demanded for σ> 50 nb
- 3. Shower leakage is ~ 1k secondaries, mostly <100 MeV to TPC