# Preparation and performance study of a new short slab for ILD SiW-ECAL

Taikan Suehara, Izumi Sekiya, K. Kawagoe, Y. Miura, T. Yoshioka (Kyushu University)









With supports from

R. Cornat (LPNHE), F. Magniette, J. Nanni, R. Guillaumat, V. Boudry, V. Balagura, J-C. Brient (LLR), R. Poschl (LAL), S. Callier (OMEGA)



**ECAL** 

#### Introduction

#### Si-W ECAL for ILD

- 20-30 layers of sandwich calorimeter
  - 5.5 × 5.5 mm<sup>2</sup> segmented silicon sensors
  - Tungsten absorbers
  - PCB with ASICs (FEV)



| size      | $89.7 \times 89.7 \text{ cm}^2$ |
|-----------|---------------------------------|
| cell size | $5.5 \times 5.5 \text{ mm}^2$   |
| # of cell | $16 \times 16 = 256$            |



- A part of ILD ECAL
- Prototype was developed in France and tested

We will prepare & check the performance of new short slab



Detector

#### Introduction



- We will prepare a new short slab of ILD ECAL
  - Si sensors
  - FEV13
  - SMB
  - DIF

#### <Procedure>

- Design jigs to assemble the FEV
- Select SKIROC2A chips
- Check the performance of the FEV without sensors
- Glue 4 Si sensors onto the FEV (training)
- Check the performance of the FEV before testbeam

#### A new short slab





Read signals from sensors with ASICs

#### Modification of new short slab

- Silicon sensors are thicker : 320  $\mu$ m  $\rightarrow$  650  $\mu$ m thickness
  - It gives better separation of signal and noise
  - Full depletion voltage: around 120 V
- ASICs are modified: SKIROC2 → SKIROC2A
  - better trigger threshold control
  - a fix on the improper treatment of trigger on the edge of the clock
  - an improvement on the timing measurement
- Better routing on FEV: two power planes (analog, digital)
  - → three power planes (analog, digital, preamplifier)
  - That plane reduces large noise from preamplifier
- Power pulsing capacitors on FEV: two 400 mF supercapacitors on SMB
  - → very thin 40 mF supercapacitors on FEV
  - It meets the spatial requirement of the detector

# Modification of new short slab (2)

- Smaller footprint of SMB (lower figure)
  - It meets the spatial requirement of the detector
- Interconnection with flexible cables
  - : 1.0 mm pitch flexible circuit (FPC)
    - → 0.4 mm pitch thin connectors with either a FPC cable or a micro-coaxial flat cables
      - easier assembly



new



Layout of previous (left) and new SMB with similar scale

# Preparation of jigs for Si sensors & FEV

- 2 jigs for Si sensors & FEV
- Fit these edges to the rubber cushions
  - →Fix these on the jigs by vacuum
- <FEV jig> ASIC chips & capacitors are mounted on the FEV
- →Dig 1.5 mm of depth for these components





#### Vacuum system

- We use the vacuum
  - to fix the sensor & the FEV on jigs
  - to move the sensor onto the FEV by robot arm (automatic)
- We use pads not to damage the sensor 3 pads on robot arm

- 1 pad on each jig

There is a spring inside the pad

It can touch the sensor softly

# Gluing sensors onto FEV

Glue: E4110-LV (Part A & Part B)

- Conductive glue
- Mix ratio by weight ... A:B = 10:1
- Viscosity (23°C): 350-850 cPs (as same as oil)
- Cure: 23°C/3 days



Set the syringe to the robot arm



#### Preparation of jigs for FEV

#### Procedure of gluing

- 1. Set a FEV on the jig & fix by vacuum
- 2. Set a sensor on the smaller jig
- 3. Fix the sensor by vacuum
- 4. Put the glue on FEV cells (on 256 points) by giving high pressure
- 5. Lift & transport the sensor with the robot arm by vacuum
- 6. Glue the sensor on the FEV
- 7. Repeat 2~6

Gluing time: about 6 minutes for 1 sensor



# optimizing of gluing

We optimized gluing (dummy) sensors on to a (dummy) FEV

1. Small acrylic plates onto an acrylic plate



2. Small acrylic plates onto a dummy FEV



3. dummy sensors onto a dummy FEV



Checking amount of glue pressure

Checking positions of glue Adjusting shot time & air & height of sensor from the FEV

Checking positions of sensor Testing of connecting

connection is OK

#### Checking performance of FEV w/o sensors

We checked the FEV before mounting the sensors



- Slow control: succeeded in loading (Trigger threshold is changed in response to slow control)
- Digital data from SKIROC2A: cannot readout
  - No triggers
  - No Dout1,2 (data serial output)
  - No TransmitOn (active data readout)



# <u>Plans</u>

- We will check the performance of the new slab at DESY testbeam in early July
- We have to ...
  - check the FEV without sensors
  - glue 4 sensors onto FEV(Cure time is about 3 days)
  - check the FEV with sensors

in three weeks

- At first, we have to complete validation of the FEV.
  - check around the trigger lines in detail
  - enable analog probe to check trigger/slow shaper

# Summary

- We will prepare a short slab of ILD ECAL for DESY testbeam
- We designed & prepared jigs for Si sensors & FEV
- We optimized the gluing method
- About FEV, slow control is succeeded in loading, but data output can not be seen

#### **Under investigation**

 We have to complete validation of the FEV, glue the sensors onto the FEV, and check the performance of it before DESY beamtest.

# backup

#### Checking performance of FEV w/o sensors

- We checked the FEV before mounting the sensors
- Slow control: succeeded in loading (Trigger threshold is changed in response to slow control)
- Digital data from SKIROC2A: cannot readout





#### SKIROC2A

start\_acq → trig\_out →
OK No
triggers?

start\_readout1 OK
end\_readout1 OK
start\_readout2 OK
end\_readout2 Off
start\_readout\_bypass Off
end\_readout\_bypass Off

→ Chipsat → dout1,2 → transmition1,2

OK no no no signal