

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Update on Dark current generation in ILC Main Linac

N.Solyak, A.Sukhanov

Motivation

☐ Fermilab

In current design 3.5m wall between main and service tunnels. Reduction of wall thickness is cost effective solution.

Thickness of wall (1.5-3.5m) separating service and operational facility is determined by max beam losses in tunnel

ALCW'2018 5/31/18

XFEL cavities as received (VT) and in CM

		Max	Usable
Average	MV/m	31.4	27.7
RMS	MV/m	6.8	7.2
Median (50%)	MV/m	32.5	28.7
Yield ≥20 MV/m		92%	86%
Yield ≥26 MV/m		85%	66%

N. Walker et al., PERFORMANCE ANALYSIS OF THE EUROPEAN XFEL SRF CAVITIES, FROM VERTICAL TEST TO OPERATION IN MODULES

typical individual error: 10%

Include operations spec

- $Q0 \ge 1 \times 10^{10}$
- FE threshold (X-ray)

→Usable Gradient

After retreatment of bad cavities:

	\ 000 L F 4 N/\//				
	Ncavs	Average	RMS		
VT	815	28.3 MV/m	3.5		
CM	815	27.5 MV/m	4.8		

Dark current is less frequent than FE

Field Emission (E=31.5 MV/m)

- uniform distribution of emitters over the cavity surface
- ▶ Fowler-Nordheim model

$$W_{FN} = N_{FN}(\beta_{FN}E)^2 \exp(-B_{FN}\phi^{3/2}/\beta_{FN}E)$$

$$\beta_{FN}=100$$

 $B_{FN}=6.83 \cdot 10^3$, $\phi=4.2$ eV,
E in MV/m, I in Amp;

- Norm factor is determined from the nominal DC value (50nA) exiting cavity
 - Norm = 4.79e12 e-/s (taking into account RF duty factor 10Hz*Ims=0.01)

ILC CM Layout

• Type A: 9 1.3 GHz 9-cell TESLA type cavities

• Type B: 4 cavities, magnet package, 4 cavities

FE: uniform distribution vs. localize source

FE in cavity (uniform distribution)

Particle trajectories (Eacc = 16 MV/m)

FE in cavity (localized source)

• Particle trajectories (Eacc = 16 MV/m); emitter in HC I, 6 mm off iris, I mm wide

Fermilab

Particle Tracking in Cavity RF Field

- 92% of emitted particles are absorbed in the same cavity
- 4% of particles are captured into acceleration, exit cavity in the direction of the main beam into the next cavity
 - continue tracking of these particles through cavities down stream until they are lost or reach next quadrupole
- 4% of particles exit cavity up stream, in the direction opposite to the main beam, and enter previous cavity
 - continue tracking of these particles through cavities up stream until they are lost or reach previous quadrupole
- Add emission and tracking for all 26 cavities between quads

RF phasing between cavities in ILC linac prevents acceleration of the dark current particles in downstream direction

NML CM2 with ILC gradients 31.5 MV/m in all cavities

Radiation

Cryomodule 2 Field Emission - RD3231 scarecrow X-ray threshold 1000 Dose Rate (mrem/hour) C1 -C2 C3 ▲ C4 ■-C5 -C6 C7 ™C8 17 19 21 23 25 27 29 31 33 Gradient (MV/m)

Dark Current

slope = (3.5-4.5)MV/m per decade

Dark current distribution from single cavity

Single cavity (just after focusing quad) emits 50 nA of dark current

DC from Single Cavity

• Distribution of peak DC from single cavity along the string of 26 cavities

Energy spectrum of lost particles

Spectrum of the particles lost inside cavity

Total prompt dose in 3CMs (top view), mSv/h

Total prompt dose

Red - Loses at the end of linac with quad ON (250GeV); T_{max} = 0.8 GeV (~3 CM's) Green - Curved linac with quads OFF; Correctors are set to tune misaligned

linac; T_{max}=19.2 GeV

factor of 20 compared to the red line

Worst case scenario

Linac with focusing quads OFF (commissioning scenario)

Twiss Parameters in BC and ML (TDR 2016 lattice file)

- Sections are well-matched.
- No residual dispersion in main linac section.

Worst case Models for Dark Current

Tracking through 40 periods of the linac (each period consists of 26 cavities and quad/correcting magnet). Focusing quads are turned OFF

Consider 4 scenarios:

- Straight linac with correcting magnets turned OFF (Bunch compressors);
- Curved linac (follows Earth curvature) with steering/correcting magnets turned OFF
- Curved linac with steering magnets ON, correctors OFF
- Curved linac with steering magnets ON and correctors ON

Straight and curved sections, quads/correctors OFF

- 40 periods (120 CM's, ~1600m)
- Spatial distribution at the exit of quads 1,10,20,30,40 (source: single cavity)

Dark current from single cavity

 DC from single cavity (50 nA) at the beginning of linac section of 40 periods for 4 different configurations

Power losses per CM: single cavity FE, quads OFF

Energy spectrum, lost/propagating particles (corr OFF)

- Energy spectrum of lost/propag electrons (per period)
- Black 1st period, red 10th period, green 20th period, blue 30th period, magenta – 40th period

Energy spectrum of lost and propagating electrons (corr 0N)

- Energy spectrum of lost/propagating electrons at the end of each RF period (per period)
- Black 1st period, red 10th period, green 20th period, blue 24th period, magenta – 30th period, periods from 31 to 40 look the same as 30th

5/31/18

Power loss along curved Linac

- Power loss at the linac cryomodules
 - Red line steering magnets ON, correctors OFF
 - Blue line steering magnets ON, correctors ON

Remarks

- In worst case scenario with 50 nA DC in each cavity, particle losses reaches steady-state regime after ~800m.
- Spectrum of lost particles in steady-state up to ~ 15 GeV.
- Radiation uniformly distributed along the linac
- Level of radiation worst case when quads are switched off is factor of x20 higher than for the case with Quad field sets for 250GeV (end of linac), studied previously

Total prompt dose

Red - Loses at the end of linac with quad ON (250GeV); T_{max} = 0.8 GeV (~3 CM's) Green – Curved linac with quads OFF; Correctors are set to tune misaligned

linac; T_{max}=19.2 GeV

factor of 20 compared to the red line

Summary

- As expected, largest losses from DC are in the curved linac with steering magnets and corrections for misalignment ON
- With every cavity emitting DC, losses levels after 20 periods (800m)
- Losses are largest in the 1st cavity after magnet and may reach 2.4 W/cavity

LCLS-II vs. ILC

Dark Current Model (LCLS-II)

- Field Emission (FE) is the source of Dark Current (DC)
 - uniform distribution of emitters over the cavity surface or localized emitter locations
 - number of emitted particles at each location varies according to Fowler-Nordheim model
 - normalize physical values to nominal DC I nA at the emitting cavity exit
 - track emitted particles through pCM until they are lost or exit

LCLS-II Performance - FE

- Spec: onset of measurable field FE E_{acc} ≥ 14 MV/m
 - Few cavities not meet spec
 - F1.3-07 first cryomodule with no measured FE
- Usable gradient requires <50 mR/hr measured outside CM
 - Exceeded for most cryomodules
- Field emission not dependent on location in string

courtesy: Olivier Napoly

LCLS2 VS ILC

• ILC (50 nA/cavity, DF=0.01) vs LCLS2 (I nA/cavity, CW)

J1.3-01 cav#6: Radiation from FE

Radiation and DC in LCLS-II CM tests in CMTF

Performance – field emission & dark current

- Field emission seen on at least one cavity of every cryomodule tested - until F1.3-07
- Location and magnitude varies
- 'Usable gradient' refers to peak gradient limited by measured FE of 50 mR/hour
- Dark current generally correlated with highest field emitting cavities
- Pulsed Processing has been effective in mitigating some field emitting cavities

Simulations vs. measurements J1.3-01

Backup slides

Radiation Data from F1.3-03

F1.3-03; cav#7 alone at 16 MV/m (July 03,2017)

Ratio = $(max signal)/(max at the end-detectors) \sim 6-7$

🗱 Fermilak

36

J1.3-01: Radiation and DC

Dark current

