Higgs studies for FCC-ee

- Krisztian Peters (DESY)
- ILC@DESY General Project Meeting Jan. 26, 2018

Future Circular Collider (FCC) Study hh ee he

- **International FCC** collaboration (CERN as host lab) to study:
 - pp-collider (FCC-hh) \rightarrow main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (*FCC-ee*), as potential first step
- **HE-LHC** with *FCC-hh* technology
- p-e (FCC-he) option, IP integration, e⁻ from ERL

Slide from Michael Benedikt

parameter	Ζ	WW	H (ZH)	t	tbar
beam energy [GeV]	45	80	120	175	182
beam current [mA]	1390	147	29	6.4	5.4
no. bunches/beam	16640	1300	328	40	33
bunch intensity [10 ¹¹]	1.7	2.3	1.8	3.2	3.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	7.8	9.2
total RF voltage [GV]	0.1	0.75	2.0	8.8	10.
long. damping time [turns]	1273	236	70	23	20
horizontal beta* [m]	0.15	0.2	0.3	1	1
vertical beta* [mm]	0.8	1	1	1.6	1.6
horiz. geometric emittance [nm]	0.27	0.84	0.63	1.34	1.4
vert. geom. emittance [pm]	1.0	1.7	1.3	2.7	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 7.5	3.15 / 5.3	2.75 / 3.82	2.76 /
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	>200	>32	>7	>1.7	>1.
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / 24	38 / 18	37 / 24	36 /

FCC-ee collider parameters

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹ 4	
Z later	200	52 ab ⁻¹ /year		
W	32	8.3 ab ⁻¹ /year	10 ab ⁻¹	1
Η	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3
machine modification for RF installation & rearrangement: 1 year				
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1
top later (365 GeV)	1.5	0.38 ab ⁻¹ /year	1.5 ab ⁻¹	4

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹ 4	
Z later	200	52 ab ⁻¹ /year		
W	32	8.3 ab ⁻¹ /year	10 ab ⁻¹	1
H	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3
machine modification for RF installation & rearrangement: 1 year				
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1
top later (365 GeV)	1.5	0.38 ab ⁻¹ /year	1.5 ab ⁻¹	4

total program duration: 14 years - including machine modifications phase 1 (*Z*, *W*, *H*): 8 years, phase 2 (top): 6 years

(FCC-ap oneration model

FCC-ee baseline luminosities

Not only about luminosity and c.m.s. energy:

- Beam polarisation
- Beamstrahlung and beam energy spread
- Bunch structure (important for detectors)
- Number of interaction points

√s [GeV]

In each detector:

- 100 000 Z / second
- 10 000 W / hour
- 1500 Higgs bosons / day
- 1500 top quarks / day

In total:

- 5×10¹² Z
- 10⁸ WW
- 10⁶ HZ
- 10⁶ tt

FCC-ee baseline luminosities

Backed up by a solid design study (2014-2017)

Most operational parameters are being commissioned at SuperKEKB

Why is the luminosity so much higher than LEP?

- Design inspired by B-factories
 - Fix 100 MW Synchrotron Radiation (SR) at all energies
 - Two separate rings for e+ and e-
 - Larger ring (×4)
 - Asymmetric IP
 - Strong vertical focusing
 - Crab-waisted crossing
 - Larger energy acceptance
 - Continuous injection

For more details, talk from P. Janot: https://indico.cern.ch/event/666889/

Higgs coupling to Z bosons

Model independent measurement of HZ coupling with recoil method

- Decay mode independent Higgs boson tagging
- Only leptonic decays at 240 GeV considered so far

Higgs boson total width

Extract Higgs boson total width from a combination of measurements in a model independent way

1) Tagging Higgs final states

 $\sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$

2) Measurement of VBF production at 350 GeV

$$\frac{\sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H} \rightarrow \text{WW}) \cdot \sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H}}{\sigma(\text{ee} \rightarrow \nu\nu\text{H}) \cdot \text{BR}(\text{H} \rightarrow \text{bb})}$$

$$\propto \frac{g_{\text{HZ}}^2 \cdot g_{\text{HW}}^2}{\Gamma} \cdot \frac{g_{\text{HZ}}^2 \cdot g_{\text{Hb}}^2}{\Gamma} \cdot \frac{\Gamma}{g_{\text{HW}}^2 \cdot g_{\text{Hb}}^2} = \frac{g_{\text{HZ}}^4}{\Gamma}$$

3) Combined fit

H→bb)

Higgs boson couplings

Measurements based on same scheme as at the ILC

- Absolute coupling measurements enabled by HZ cross section and total width measurement
- Tagging individual Higgs final states to extract various Higgs couplings

Most complete study from TLEP case study arXiv:1308.6176

- Full simulation with CMS detector, apart from:
 - Vertex detector similar to a linear collider (lifetime-based c-tagging)
 - Luminosity measurement with Bhabha scattering
- Statistical uncertainties shown for current operation model with 2 IP (5 ab⁻¹ at 240 GeV and 1.5 ab⁻¹ at 350GeV)
- Data at 350 GeV further constrain total width
 - Only used $H \rightarrow bb$ in WW fusion production so far

in %	FCC-ee 240 GeV	+FCC- ee 350 GeV
g нz	0.21	0.21
ਉ нw	1.25	0.43
9 нь	1.25	0.64
G Hc	1.49	1.04
g нg	1.59	1.18
g _H _τ	1.34	0.81
G Ημ	8.85	8.79
Β Ηγ	2.37	2.12
Гн	2.61	1.55

Model-independent fit, statistical uncertainties only

Higgs boson couplings

Factor ~10 improvement for most couplings compared to HL-LHC

- Model dependent fit for HL-LHC results
- Results for one LHC experiment
- Nice complementarity (and synergy) with e+e- colliders

Periodic returns to the Z-peak for calibrations

Experimental precision must be accompanied by theoretical precision programme

- Control of parametric uncertainties (c.f. arXiv:1404.0319)
- Higher order calculations for EWPO
- Significant work needed for Higgs production in e⁺e⁻ (2 loop EW)
- Higgs decays mostly under control to meet experimental precision

in %	HL-LHC	FCC-ee
g нz	2-4	0.21
g нw	2-5	0.43
9 нь	5-7	0.64
ਉ нс	-	1.04
g нg	3-5	1.18
g н _τ	5-8	0.81
Ο Ημ	5	8.79
Янγ	2-5	2.12
Гн	5-8%	1.55

arXiv:1307.7135 arXiv:1308.6176

FCC: model-independent fit, statistical uncertainties only

Towards the FCC CDR

FCC CDR to be ready by the end of 2018

- Analyse impact of detector performance
- Establish Higgs results with a detector proposed for FCC-ee

Current focus of the group is to re-compute / study Higgs measurements in order to:

- Lower priority: improve results by adding missing channels, e.g. Z(had)H and analysis optimisation

FCC-ee detector

The CLIC detector is being adapted for FCC-ee

- Smaller beam pipe radius (15mm)
 - Inner pixel layer closer to IP
- Not instrumented from 0 to 150 mrad
- Smaller B field
 - Larger tracker radius $(1.5 \rightarrow 2.2m)$
- Smaller energies
 - Thinner HCAL (4.2m \rightarrow 3.7m)
- Continuous operation
 - Increased cooling
 - Thicker pixel/tracker layers
 - Reduced calorimeter granularity

Further detector concept dedicated for FCC-ee (with light wire drift chamber and dual readout fibre calorimeter)

Analysis tools

Need a fast simulation and detector modelling

Mainly use a framework developed by Colin Bernet (called papas) based on a full PF algorithm similar to CMS

- Validated to full CMS simulation
- Delphes is also used (gives further cross check)

Generic analysis framework based on python called heppy (HEP in Python)

- Also used in CMS

a merged cluster

Resonant Higgs production study

Higgs decay to ee is unobservable: $BR(H \rightarrow ee) = 5 \cdot 10^{-9}$

Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu \rightarrow H) = 70 \text{ pb}$

Tiny e Yukawa coupling: $\sigma(ee \rightarrow H)=1.64$ fb

- and ISR
- Large backgrounds

- In theory, FCC-ee running at H pole-mass: $L_{int} = 20 \text{ ab}^{-1}/\text{yr}$ would produce O(30.000) H's
- Life is more difficult
- Strong cross section reduction through beam energy spread

More realistic cross sections

Higgs production greatly suppressed off resonant peak

Convolution of Gaussian energy spread of each e[±] beam with Higgs B.-W. results on an effective cross-section decrease:

For $\sqrt{s_{spread}} \approx 30$ MeV: Reduction factor: $\times 1/12$

More realistic cross sections

Higgs production greatly suppressed off resonant peak

Convolution of Gaussian energy spread of each e[±] beam with Higgs B.-W. results on an effective cross-section decrease:

 $\sqrt{s_{spread}} = \Gamma_{H} = 4.2 \text{ MeV}$ ~45% x-section reduction

Reachable with beams monochromatization? [F.Zimmermann, M.Valdivia-García JACoW-IPAC2017-WEPIK015]

e Yukawa limits

10 Higgs decays analysed and combined, e.g.

ZZ* (2j2v): $\sigma = 2.3 \text{ ab}$ Dom. bckgd (ee \rightarrow ZZ*): $\sigma=213 \text{ ab}$ (S/B \sim 10⁻²) ZZ* (2l2j): $\sigma = 1.14 \text{ ab}$ Dominant bckgd (ee \rightarrow ZZ*): $\sigma=114 \text{ ab}$ (S/B \sim 10⁻²) After 1y for baseline and optimised monochromatisation $g_{eH} < 2.4 \times g_{eH,SM}$ (95% CL) $g_{eH} < 2.2 \times g_{eH,SM}$ (95% CL)

Conclusions

Fantastic prospects to probe the Higgs sector with FCC-ee CDR currently in preparation (to be released by the end of the year)

	2	3 – Hadron Collider Co
THT SICS	Hadron	Accelerator Ir
	Collider Summary	Infrastructure Oper
		5 – Lepton Collider Cor
Physics opportunities across all scenarios	4 Lepton	Accelerator Ir
	Summary	Infrastructure O
	6	7 – High Energy LHC Co
	High	Accelerator Ir
	LHC	Refs to FCC

- But also a broad and exciting precision physics programme in general (from Z to tt)

