

Iohn Adams Institute or Accelerator Science

ATF2 December Shifts 2

R. Ramjiawan Friday, 5th December 2017

2-BPM Feedback

gainScan2_10dB_0.8 Calibration file: AQD0FFyScan8

How important was the integration?

- I have looked at the file which gave us best performance in 2-BPM mode and analysed how predicted feedback performance depends on the integration window and how it depends on the resolution.
- I wanted to characterise how much of an effect the integration had in achieving 40.9 nm stabilisation.
- First, for each integration window width, I optimised the location of the window to bring the best resolution...

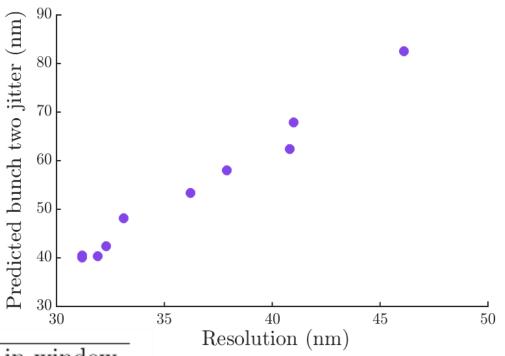
Optimising each Width of Integration Window

			0.18
Window width	Res. (nm)	Samples in window	a 0.16
1	40.8	38	
2	37.9	38 to 39	
3	33.1	37 to 39	0.12 0.12 0.1
4	31.9	36 to 39	
5	31.2	36 to 40	
6	31.2	35 to 40	
7	32.3	35 to 41	
8	36.2	35 to 42	0.06
9	41.0	35 to 43	
10	46.1	35 to 44	
			$\begin{array}{c} 0.02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

Colour: the first sample in the integration window.

-35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45

Predict feedback performance


- Predict the feedback performance for each optimised integration window, using the measured bunch jitters and bunch to bunch position correlation.
- Does predicted feedback performance depend on integration window?
- How much does it depend on the resolution? How much are we resolution limited?
- How does the predicted performance compare with the actual performance?

$$\sigma_{Y_2}^2 = \sigma_{y_1}^2 + \sigma_{y_2}^2 - 2\sigma_{y_1}\sigma_{y_2}\rho_{12}$$

- Predicted stabilisation performance for integration windows 1 sample to 10 samples, plotted against the resolution measured for that window.
- Each window has been located so as to optimise the resolution for that window.

• Gradient of plot 2.74.

Window width	Res. (nm)	Pred. performance (nm)	Samples in window
1	40.8	62.4	38
2	37.9	58.0	38 to 39
3	33.1	48.2	37 to 39
4	31.9	40.4	36 to 39
5	31.2	40.1	36 to 40
6	31.2	40.4	35 to 40
7	32.3	42.4	35 to 41
8	36.2	53.4	35 to 42
9	41.0	67.9	35 to 43
10	46.1	82.5	35 to 44

Matches the window at which feedback was actually performed for this data file.

40.9±4.1 nm.

Actual stabilisation:

Effect of Charge Jitter

Position-Charge Correlation

- The gains used are valid for a single value of the charge but there is charge jitter.
- Will this introduce second order errors in the kick calculated for bunches with a slightly different charge?
- If this is an issue, the position of the feedback on (bunch two) triggers should correlate with the charge....

Bunch 2 Position-Charge Correlation

John Adams Institute for Accelerator Science