

Higgs decay to WW* in Higgsstrahlung at 250 GeV

Mila Pandurović

Vinca Institute of Nuclear Sciences ILD analysis and sofware meeting January 2018.

Introduction

- Analyzed HZ fully hadronic decay: $Z \rightarrow qq$, $H \rightarrow WW^* \rightarrow qqqq$
- □ HZ @250GeV $\sigma(e^+e^- \rightarrow HZ, Zqq)$ ~ 346 fb
- \square $\mbox{BF}_{H \rightarrow WW} \mbox{-}23.0\%$, $\mbox{BF}_{WW \rightarrow qqqq} \mbox{-}45.5\% \Longrightarrow \mbox{-}10\%$ of Higgs decays
- □ $\sigma(e^+e^- \rightarrow HZ, Z \rightarrow qq, H \rightarrow WW^* \rightarrow qqqq)$ ~fb
- Signal signature:

6 central wide jets in the final state

- Considered luminosity scenarios:
 - □ 500 fb⁻¹ P(e⁺,e⁻)=(-80%,+20%)
 - □ Considered P(e⁺,e⁻)=(+80%,-20%) polarization statistics

S

Jet grouping: Higgs, Z, W boson formation

- The event is forced into 6 jets
- Obtained jets are grouped into pairs to form the Higgs, W, W* and Z bosons
- The combination which minimizes the χ^2 is chosen :

$$\chi^{2} = \frac{\left(M_{ij} - M_{W}\right)^{2}}{\sigma^{2}_{W}} + \frac{\left(M_{kl} - M_{Z}\right)^{2}}{\sigma^{2}_{Z}} + \frac{\left(M_{ijmn} - M_{H}\right)^{2}}{\sigma^{2}_{H}}$$

• For the $\sigma^2_{H,W,Z}$ - WA width

R determination

- □ Force event into 6 jets. R=0.8,1.0,1.1,1.2,1.3,1.4,1.5
- Jet Pairing to form Higgs, Z, W
- Fit of the invariant mass of the Z boson in an interval s around the peak
 85 GeV <m_z<95 GeV
 125 GeV <m_{Higgs}<130 GeV
- The best fit results are obtained for the R=1.5

Reconstructed boson masses

6

Signal reconstruction

M. Pandurović

ILD analysis and software meeting 17. January 2018.

7

All relevant background included

criteria: signal like signature – purely hadronic; jets in the final state the considered backgrounds with the cut-off cross-section value $\leq \sigma_s$

	σ[fb⁻¹] P(e⁺,e⁻)=(-80%,+20%)	expected #evts/500fb ⁻¹
Signal	36,2	18 104
Non WW Higgs decays	309,8	154 900
2f	129148,6	64 574 500
4f WW hadronic	14874,3	7 437 000
4f ZZ hadronic	1402,0	6 191 650
4f WW/ZZ hadronic	12383,3	701 000
4f WW semileptonic	18781,0	9 390 500
4f ZZ semileptonic	1422,1	711 000

Invariant masses of the reconstructed bosons

Input variables

Input variables

Jet transition probabilities a kt value at which number of jets transits from i number of jets to j, y_{ii}

Kinematical cut selection

- \square m_Z >70. m_H >100 m_{W1} >60
- number of particle flow objects NPFO>70 Visible energy >200 GeV ptJet<20</p>
- □ thrust<0.90
- A k_t value at which a number of jets transits from (i) to (i+1) number of jets
- □ y12 < 2.2 y23 < 3.0 f_y34 < 3.5 y45 < 4.0 y56 < 4.0 y67 < 4.5

	#evts / 500fb- ¹	Kinmatic Cut Eff	#evts After Kine cuts
Signal	154 900	89.2	18856
Non WW Higgs decays	64 574 500	54.66	84448
2f	7 437 000	1.47	950863
4f WW hadronic	6 191 650	33.5065	2 492 230
4f WW/ZZ hadronic	701 000	33.8011	2 093 230
4f ZZ hadronic	9 390 500	42.9216	300743
4f WW semileptonic	711 000	0.00536228	503.52
4f ZZ semileptonic	18 104	0.50039	3556.44

The training on five hadronic backgrounds (nonWW Higgs decays, 2f hadronic, 4f hadronic –WW,ZZ,Mix ZZ/WW) – better results then using also semileptonic backgrounds

- Invariant masses: m_Z m_{Higgs} m_W
- Number of particle flow objects NPFO
- Transverse momentum of;
 - Highest P_t jet in the event
 - Higgs jets P_{tHiggsJets}
- Event shape variables: thrust, aplanarity, oblateness, sphericity
- **D** Jet transitions: $y_{12} y_{23} y_{34} y_{45} y_{56} y_{67}$
- 2jet hypothesis applied flavor tagging: second highest btag2, ctag2
- Angle between jets
 - Z: ThetaZqq
 - W: ThetaWqq

Variable set is optimized - disgarded variables: Evis, m_{W*}, thetaW*qq, thetaHiggs(WW*) single jet Pt,

b tagging applied on 2 and 6 jets hypothesis- more efficient when targeting $H \rightarrow bb$ (2jet hypothesis) using only second highest

	σ [fb ⁻¹]	#evts after Kinematic cut 500 fb ⁻¹	8 _{BDT}	#evts BDT 500 fb ⁻¹	
Signal	22.6	18856		5600	
Non WW Higgs decays	323.4	84448		6338	
2fermion	129148.6	950863		5410	
4f WW hadronic	14874.3	2 492 230		14961	
4f WW/ZZ hadronic	12383.3	2 093 230		13340	
4f ZZ hadronic	1402.0	300743		7178	
4f WW semileptonic	18781.0	503.52		-	
4f ZZ semileptonic	1422.1	3556.44		49	

The dominant background are four fermion (jet) hadronic backgrounds due to the similar topology that can fake 6 jet signal signature

Event selection using multivariate analysis

Cut analysis

After TMVA

- The result was obtained by optimization of significance
- The kinematic cuts prior to multivariate analysis largely reduce semileptonic backgrounds
- The training of the multivariate methods has been performed on the hadronic backgrounds
- The dominant background after final selection are 4f hadronic
- The extremely large cross section backgrounds 10⁵, qq, can fake the signal six jet signature but it is largely reduced

Summary

- Fully hadronic decay of $H \rightarrow WW^*$ analyzed
- All relevant background included the considered backgrounds with the cut-off cross-section value $\leq \sigma_{s}$
- High cross-section semileptonic backgrounds reduced by prior standard cut analysis
- Final background reduction performed MVA (BDTG)
- Minimization of the observable set done
- The obtained relative statistical uncertainty is 4.1 with the corresponding signal efficiency of 29%

N _s	5600
$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$	4.1%
ε _{sig} [%]	29

A place for slight improvement R parameter for jets

- **Technicality:** FastJet 2.4.2 exhibits maximum of jet opening of $R_{max} \cong 1.52$, not found in 3.1.2
- The best fit results are obtained for the R=1.5
- Jets are soft and widely spread needed slightly wider jet opening invariant masses are slightly underestimated – better to increase over R_{max} >1.52 –overload 2.4.2

BACKUP

- Applying looser kinematic cut selection leads to the slight increase in the final result but with ~10% gain in signal efficiency
- Allows the optimization of the significance/signal efficiency

	250 GeV 500fb-1	
Preselection criteria		
N _s	5600	7679
$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$	4.1%	4.5%
ε _{sig} [%]	29	37

	250 GeV σ[fb ⁻¹] P(e ⁺ ,e ⁻)=(-80%,+20%)	500 GeV σ[fb⁻1] P(e⁺,e⁻)=(-80%,+20%)
Signal	36,2	11.3
Non WW Higgs decays	309,8	103.5
2f	129148,6	32470.5
4f WW hadronic	14874,3	7680.7
4f ZZ hadronic	1402,0	680.2
4f WW/ZZ hadronic	12383,3	6400.1
4f WW semileptonic	18781,0	9521.5
4f ZZ semileptonic	1422,1	608.6

N _S	5600	1348
$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$	4.1%	6%
ε _{sig} [%]	29	30

