

Top electroweak couplings study using di-leptonic state at $\sqrt{s} = 500$ GeV, ILC with the Matrix Element Method

0119

Yo Sato^A

Akimasa Ishikawa^A, Emi Kou^B, Francois Le Diberder^B, Hitoshi Yamamoto^A,

Junping Tian^C, Keisuke Fujii^D, Ryo Yonamine^A

Tohoku University^A, LAL^B, University of Tokyo^C, KEK^D

Update from last meeting

At last meeting, we tried to loosen a cut criteria to recover the sensitivity.

Update

- Optimization the criteria
- Consider the irreducible background (single top production, WWZ)

Optimization for the binned analysis

 χ^2 for the binned likelihood is defined as

$$\chi^2(\delta F) = \sum_{i=1}^{N_{\rm bin}} \frac{n_i^{\rm data} - n_i^{\rm Sim.}(\delta F)}{\sqrt{n_i^{\rm data}}}$$

 $n_i^{\rm Sim}$ can be computed as

$$\begin{split} n_i^{\text{Sim.}}(\delta F) &= n_i^{\text{Sim. sig}}(\delta F) + n_i^{\text{Sim. bkg}} \\ &= \frac{L^{\text{data}}}{L^{\text{Sim.}}} \sum_{\omega_e \in bin_i} \left(1 + \omega(\Phi_e)\delta F + \tilde{\omega}(\Phi_e)\delta F^2\right) + n_i^{\text{Sim. bkg}} \\ &= n_i^{\text{Sim. sig}}(0) \left(1 + \langle \omega \rangle_i \delta F + \langle \tilde{\omega} \rangle_i \delta F^2\right) + n_i^{\text{Sim. bkg}} \end{split}$$

Optimization for the binned analysis

The precision can be obtained from the inverse of the second derivative of $\frac{1}{2}\chi^2$.

$$\frac{\partial^2}{\partial(\delta F)^2} \frac{1}{2} \chi^2(\delta F) = \sum_{i=1}^{N_{\text{bin}}} \frac{1}{n_i^{\text{data}}} \left(\frac{\partial n_i^{\text{Sim. sig}}(\delta F)}{\partial(\delta F)} \right)$$
$$= \sum_{i=1}^{N_{\text{bin}}} \frac{(n_i^{\text{Sim. sig}}(0))^2}{n_i^{\text{data}}} \langle \omega \rangle_i^2$$

 $n_i^{\text{Sim.sig}}(0)$ is approximately same as $n_i^{\text{data sig}}$

$$\frac{\partial^2}{\partial (\delta F)^2} \frac{1}{2} \chi^2(\delta F) \simeq \sum_{i=1}^{N_{\rm bin}} \left(\frac{n_i^{\rm data \ sig}}{\sqrt{n_i^{\rm data \ sig} + n_i^{\rm data \ bkg}}} \right)^2 \langle \omega \rangle_i^2$$

Optimization for the binned analysis

That's why we use the significance, *S*, to optimize the criteria.

$$S = \frac{N^{sig}}{\sqrt{N^{sig} + N^{bkg}}}$$

The effect of the miss combination of μ and b-jet maybe affect on $< \omega >$ and we should care of it. But in my thesis, we only consider *S*.

Irreducible backgrounds

We have used $bb\mu\mu\nu\nu$ as signal events.

However, these events are produced by several processes, such as **the single top production** and **WWZ** which don't depend on the form factor.

We should separate them from the top pair production and consider them as background.

(If we apply *the template method*, we don't need to care of it.)

We use following criteria to select the top pair production.

 $|M_{b\mu^+\nu} - 174| < 15 \& |M_{\bar{b}\mu^-\bar{\nu}} - 174| < 15$ (at truth level)

referring to arXiv:1411.2355 [hep-ex].

選別項目	Signal	$t\bar{t}$	tī以外	Background	qqll	$bbll \nu \nu$
No Cut	2837			8410633	91478	8491
μ selection	2618			327488	13827	381
$\mathrm{b\text{-}tag_{max}} > 0.5 \text{ or } \mathrm{b\text{-}tag_{2nd}} > 0.3$	2489	2215	273	4143	2943	358
Quality cut $(q_{\min} < 11.5)$	2396	2103	195	624	258	312

Left polarization

選別項目	Signal	$t\bar{t}$	tī以外	Background	qqll	$bbll \nu \nu$
No Cut	1261			3751175	46344	3758
μ selection	1170			230260	6987	186
$\mathrm{b\text{-}tag_{max}} > 0.5 \text{ or } \mathrm{b\text{-}tag_{2nd}} > 0.3$	1097	1046	79	2118	1468	179
Quality cut $(q_{\min} < 12.5)$	1046	976	70	297	132	149

Right polarization

Results : $\widetilde{F}_{1V}^{\gamma}$

Results of 1 parameter fit. \tilde{F}_{1V}^{γ}

 $\delta \tilde{F}_{1V,\text{fit}}^{\gamma} = -0.0038 \pm 0.0071, (\text{C.L.} = 55.2\%)$

Comparison with semi-leptonic analysis

Quantity	Standard model	ILC[40]	ILC	
Quantity	tree-level	$\mathrm{L}=500~\mathrm{fb}^{-1}$	$\mathrm{L}=500~\mathrm{fb}^{-1}$	
		$\operatorname{semi-leptonic}$	本研究	
F_{1V}^{γ}	2/3	± 0.002	± 0.0071	
F_{1V}^Z	0.230	± 0.003	± 0.0128	
F_{1A}^{γ}	0	-	± 0.0162	
F_{1A}^Z	-0.595	± 0.007	± 0.0262	
F_{2V}^{γ}	0	± 0.001	± 0.0058	
F_{2V}^Z	0	± 0.002	± 0.0102	

$$\frac{N_{\text{semi-leptonic}}}{N_{bb\mu\mu\nu\nu}} \simeq \frac{\frac{6}{9} \times \frac{2}{9} \times 2}{\frac{1}{9} \times \frac{1}{9}} = 24$$

 \rightarrow a factor of 5 can be expected.

Almost consistent with semi-

leptonic analysis and our results

are slightly better for some

quantities intrinsically.

Quantity	Standard model	ILC[41]	ILC	
Quantity	tree-level	$\mathrm{L}=500~\mathrm{fb}^{-1}$	$\mathrm{L}=500~\mathrm{fb^{-1}}$	
		${\scriptstyle \rm semi-leptonic}$	本研究	
$\mathcal{R}eF_{2A}^{\gamma}$	0	± 0.005	± 0.0238	
$\mathcal{R}eF^Z_{2A}$	0	± 0.007	± 0.0351	
$\mathcal{I}mF_{2A}^{\gamma}$	0	± 0.006	± 0.0223	
$\mathcal{I}mF^Z_{2A}$	0	± 0.010	± 0.0394	