

Preparation of slab production in Japan

Taikan Suehara (Kyushu University)

Production in Japan - Targets

- Optimization of production/test method
 - Benefits from Japanese industry
 - PCB, FPC, dispenser, ...
 - We have close connections to design companies

 (instead of work by in-house engineers in Europe)
- Quick studies in Japan by having more slabs
 - Firmware development
 - Development of test stands
 (ASIC, slab with RI, cosmic, ...)
- Get more slabs by production at multi-sites
- Investigate optimal price

Breakup of a short slab

Breakup of a short slab (cont.)

- Sensors by HPK
- FEV with SKIROC2(A)
- Gluing sensor to FEV
- SMB board (adapter to DIF) and interconnection
- FPC (Kapton) for bias (and gluing them)
- Copper sheet and cover
- Stiffener
- DIF

Sensor production

- An order of 24 sensors has been placed
 - Delivery estimation: mid March
 - 650 $\mu m,~expected$ full depletion at ~ 120 V
 - 5 to LLR, 19 kept in Kyushu
 (16 for slabs, 3 for backup & sensor studies)
 - Cost: 108 kJPY (~800 EUR)/sensor (special price, for order 20- in Japan)

Exchange of material

• LLR – Kyushu

- 1st exchange
 - + 8 wafers (320 $\mu\text{m},$ 0GR) to LLR in 2015
 - 1 slab/DIF to Kyushu in 2017
 - 4 DIF (without cabling) to Kyushu in 2016
- 2nd exchange
 - 5 wafers (650 $\mu\text{m})$ to LLR (4 kEUR)
 - Packaged chips (80?) to Kyushu (2 kEUR)
 - 1 GDCC to Kyushu (2 kEUR?)
 - ~ 7 SMBv5 (without cabling?) to LLR
 - 2 FEV12 (without cabling?) to Kyushu
- LAL Kyushu
 - 2 wafers (320 or 500) from Kyushu
 - TLU from LAL?

SKIROC2A - Test stand

420

400 380 360

340

320 300

260

Omega testboard (BGA ver.) Control by C++ software

- Automatic scan w/ slow control ullet
 - Channels, thresholds, etc. •
- Automatic DAQ •
- Automatic control of pulser •
 - Linearity, S-curve etc. •
- 10+10 chips tested \rightarrow 89 more •

Detailed report will be in Mainz

SKIROC2A - issues

Double pedestal observed degrading pedestal width Relation to retriggering should be checked

Individual threshold control is not good with socket board and SKIROC2A (big shift on trigger threshold even with 4-bit DAC=0)

No-good TDC shape on Soldered board (OK with socket but worse resolution

SKIROC2A test plan

- Target: 1 hour / chip (89 chips in 2 weeks)
 - Installation
 - S-Curve of trigger
 - With 1 and 2 MIP injection
 - All channel at once gain and S/N ratio
 - Even and odd channels crosstalk
 - Without injection (which we need some kind of online analysis, which can be implemented only in April)
 - Slow shaper
 - Pedestal calibration
 - Linearity, crosstalk and S/N ratio
 - Injection at all channels and even/odd channels
 - TDC calibration?

FEV production

- FEV13 designed by LLR
- We planned to produce it in Japan, but due to budget reason this delayed to next FY (after April)
- We'll receive 2 (or 3) boards from LLR in end of March
- Will be cabled and tested in April

SMB (adapter board)

- Designed in Japan
 - Schematic in Kyushu (myself) finished
 - Layout by Japanese company ongoing
- Major changes
 - TINY footprint
 - Components in 70 x 40 mm (C/H zone) (except LEMO and PP-capacitors)
 - All chips are changed to small/thin
 - Power regulators
 - Buffer chips
 - Change of FEV connection
 - Flex cables (40 pins) x 3
 - Pin assignment reconsidered (by LLR)
 - Power supply to preamp (AVDD_PA) separated from AVDD

SMB (cont)

Schedule

- First schematic 22 Dec. 2017
- Final schematic and BOM 15 Feb. 2017
- Meeting with layout designer 8 Feb. 2017
- First layout hopefully 23 Feb. 2017
- Final layout 2 Mar. 2017 (production due date)
- Start production 5 Mar. 2017
- Delivery of un-cabled boards 14 Mar. 2017
- Start of cabling 15 Mar. 2017
- Delivery of cabled board 28 Mar. 2017
- Price (7 + 1 build-up board)
 - Layout: 3.8 kEUR (allegro engineers are hard to find in Japan)
 - Board production: 3 kEUR initial + 140 EUR / board (for 5-20)
 - Cabling: 650 EUR initial + (110 + 400) EUR / board (for 2)

Gluing sensors and alignment

- We bought a glue dispenser with a 3-D stage in Kyushu
 - 20 kEUR
 - Multi-project facility (ILC, ATLAS, muon g-2)
- Glue: EPO-TEK E4110-LV (low viscosity version)
 Will be optimized later
- Alignment: we will develop a jig to pick-and-place the sensors on to FEV by this robot

3 pads will be used to hold sensors

Misc.

- Kapton (FPC)
 - We can produce, but budget is unclear in this FY
- Carbon fiber
- Copper plate
 Possible next FY
- Others?

_?

Schedule of assembly/test

- First (1?) FEV available in end of April
- First (2?) SMBs available in end of March (out of 15 boards)
- FEV-SMB-DIF test wo sensor in early May
- Gluing preparation: March April
- First gluing: late May
- Test with sensor: May June
- Will see if we can send it to test beam in end of June
 - Single slab maximum
- (5) FEV production in Japan: maybe June
- Pure-Japanese slabs will be produced in July-August
- Can be sent to test beam if we have in Autumn

Other activities

Position sensitive detector

Basic pattern 5.5 x 5.5 mm, 4 pads/cell 4 x 4 cells \rightarrow 64 ch

Low-resistance edges to reduce distortion

Resistive 1-D strips to reduce distortion

45 degree strips to separate to 2 zones

Shared pads to reduce readout ch.

Wafer pattern Delivery: end March

Two options included

- Resistive P+ (1kΩ/cm²)
- Dedicated R layer (10k)

Timing detector

• LGAD

Try to produce next FY (we have dedicated budget)

- 50-60k EUR needed!!
- Delivery: end of this year (?)
- Timing layer
 - Should be small to minimize capacitance
 - Should try several sizes of pads and strips
 - Thin active thickness of 50-100 μm
 - Due to mostly technical difficulty in HPK
 - They're still developing possible thickness not clear
 - Inverse-type LGAD (gain layer at the bottom)
- PSD layer
 - To increase S/N ratio should try